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Abstract
Drug combination trials are often motivated from the fact that individual drugs target the same disease but via different

routes. Hence by combining drugs one can achieve an overall better effect than conducting individual treatment. Several
approaches have been explored for developing statistical methods that compare (single) fixed dose combination therapies to
its component. But extension of these approaches to multiple dose combinations can be difficult and is not fully explored.
We propose two approaches by which one can provide confirmatory assurance with familywise error rate control, that com-
bination of two drugs is more effective than either component drug alone. These approaches involved multiple comparisons
in multilevel factorial design where the type 1 error rate is controlled firstly, by bootstrap test, and secondly, by considering
the least favorable null configurations under an union intersection test. In this poster we would like to demonstrate the imple-
mentation of these new approaches and compare their performance with a real data example from a blood pressure reduction
trial and via extensive simulations.

Introduction
In the poster we focus on a multiple dose drug combination trial, where the objec-
tive is to show superiority of the combined drugs over the individual drugs while
preserving the family wise error rate (FWER), and thereafter identifying the set
of superior dose combinations that can be used in the drug development process.
The multiple hypotheses testing for the above problem can be formulated as below:

H0 : ∀ i, j; µij ≤ µi0 or µij ≤ µ0j
H1 : ∃ i, j; µij > µi0 and µij > µ0j

(1)

Testing the superiority in a single dose drug combination trial is not difficult but
proposing a conservative test that controls the family wise error rate in a drug com-
bination trial with multiple doses is not so trivial. We propose two single-step testing
procedures using a MAX test statistics [1] which test if there exist atleast one com-
bination in a multiple dose factorial drug combination study that performs better
than the component drugs. Further the multiple testing procedures satisfy the sub-
set pivotality condition [3] which ensures that FWER is controlled under both the
approach.

Parametric set-up
Consider a (r+1)×(s+1) factorial design, where Drug A have dose levels 0, 1, . . . , r
and Drug B have dose levels 0, 1, . . . , s. We consider the following anova set up:

Yijk = µij + εijk (2)

where i = 0, . . . , r, j = 0, . . . , s, k = 1, . . . , nij. Y = (((Yijk))): observations for the drug combinations trial, µi0 : mean
effect of dose i of Drug A (monotherapy 1), µ0j : mean effect of dose j of Drug B (monotherapy 2), µij : mean effect
of the combination: dose i of Drug A and dose j of Drug B and nij: number of subjects allocated in ijth combination.

We propose the following max test statistics for testing H0 against H1:

T = max
i,j

Tij = max
i,j
{min{T 1

ij, T
2
ij}} (3)

where Tij denote the test statistic for testing H0ij : µij ≤ µi0 or µij ≤ µ0j against
H1ij : µij > µi0 and µij > µ0j. Here T 1

ij and T 2
ij are the contrast test statistics used

for testing whether the (i, j)th drug combination is superior to the monotherapy 1
and 2 respectively. The raw p values (pij) corresponding to each H0ij can be easily
obtained using Min tests but for testing multiple combinations, these raw p-values
need to be adjusted. Multiplicity adjustment is challenging here because computing
the distribution of T is analytically quite difficult, specially for large r and s.

Methods
1. Bootstrap Approach

1. For the given data, compute the test statistics
T (say t) and estimate the mean(µ) under

2b. NB constraint
µij = max(µi0, µ0j) ∀ i, j

2a. NI constraint
µij ≤ max(µi0, µ0j) ∀ i, j

3. Simulate 5000 normal random variables with the
estimated means. For each simulated data, compute
the test statistics T (say T k) and Tij (say T kij).

4. Compute
∑
k I(T

k > t)/5000 and
∑
k I(T

k
ij > t)/5000

(adjusted p-values), where I is the indicator function. Check
if the adjusted p-values are within the significance level.

2. Least Favourable Null Configuration Approach (LFC)
The least favourable configurations (LFC) identifies the ”worst case scenarios” that
leads to the largest type 1 error rate.
1. Computing the distribution of T under the null parameter space is complicated so

we focus on the LFC. For evaluating H0ij, the LFC occur when µ ∈ LFCij where:

LFCij = {µ| (µij = µi0, µij >> µ0j) or (µij = µ0j, µij >> µi0)}.

The LFC for the global null H0 occurs when µ ∈ LFC where LFC = ∩
i,j
LFCij.

2. Consider the critical value Cα such that it satisfies: max
τ∈LFC

(1 − Prτ(T ≤ Cα)) = α.
We reject the global null in H0 when the observed T > Cα. Furthermore, all the
component test statistics Tij are tested against the critical value Cα and decisions
are taken following a single-step testing procedure.

Implementation
A Case Study

A combination of a diuretic (drug B) and an ACE inhibitor (drug A) is tested for
efficacy in decrease of sitting diastolic pressure (SiDBP) with a pooled standard
deviation of σ = 7.07 ([2]). The response means and sample size allocation is
summarized by the following table:

Table 1: Expected response structure of the
drug combination study

Drug A

Drug B 0 1 2 3

0 0 (75) 1.4 (75) 2.7 (74) 4.6 (48)
1 1.8 (74) 2.8 (75) 5.7 (74) 8.2 (49)
2 2.8 (48) 4.5 (50) 7.2 (48) 10.9 (48)

Table 2: The unadjusted and adjusted p values under each com-
ponent hypothesis for the different methods:

Dose Comb TStat UnadjP BonfP BootP LFCP

(1,1) 0.863 0.194 1.000 0.481 0.709
(1,2) 1.190 0.117 0.703 0.284 0.512
(3,1) 2.507 0.006 0.037 0.006 0.036
(2,1) 2.581 0.005 0.030 0.004 0.029
(2,2) 3.049 0.001 0.007 0.001 0.007
(3,2) 4.365 0.000 0.000 0.000 0.000
Dose Comb: Different dose combinations
TStat : Test statistics Tij testing for H0ij .
UnadjP is the one-sided raw p-value testing H0ij against
H1ij. BonfP, BootP and LFCP are the one sided Bonferroni
adjusted, Bootstrap adjusted and LFC adjusted p-values re-
spectively.

Simulations

• 3 dose groups (2 active and 1 placebo) for Drug A combined with 2 dose groups
(1 active and 1 placebo) for Drug B.
•Balanced factorial design with nij = n∀ i, j where n = 10, 25, 50, 75, 100
• 5000 simulations considered and standard normal errors assumed

Simulation Scenarios

Least Favourable Config Drug B
Drug A

0 1 2

H0(LF1) 0 δ δ δ
1 δ + a δ + a δ + a

H0(LF2) 0 δ δ δ + 2a
1 δ + a δ + a δ + 2a

H0(LF3) 0 δ δ + 2a δ
1 δ + a δ + 2a δ + a

H0(LF4) 0 δ δ + a δ + a
1 δ δ + a δ + a

Table 3: Scenario 1( Evaluating Type 1 error with δ = 2, a = 9999)

Drug A

Drug B 0 1 2

0 2 2 2
1 2 2.5 2.5

Table 4: Scenario 2 (Evaluating power)

Results
Table 5: Table illustrating the empirical type 1 error rate for
the different methods under Scenario 1:

Sample Size Bonf Hung Boot LFNull

10 0.045 0.057 0.047 0.045
25 0.049 0.055 0.053 0.051
50 0.046 0.049 0.048 0.047
75 0.042 0.045 0.045 0.044
100 0.048 0.050 0.048 0.048

Table 6: Table showing the empirical power of 5% level max
test for the different method under Scenario 2:

Sample Size Bonf Hung Boot LFNull

10 0.149 0.172 0.220 0.153
25 0.433 0.443 0.508 0.438
50 0.789 0.794 0.835 0.790
75 0.929 0.931 0.945 0.930
100 0.980 0.979 0.983 0.981

•The type 1 error is controlled for all the methods under Scenario 1.
•The bonferroni method and the LF null approach is more conservative compared

to the other approach.
•Bootstrap approach is showing better power performance across all scenarios.

Conclusions

•We observe from our simulations that both the bootstrap and LFC approach con-
trols the FWER at nominal level α. While the LFC controls the FWER always
below α bootstrap approach controls the FWER only asymptotically. But the boot-
strap approach is more preferred because it gives better power as compared to
the other approaches.
•The above methods provide a set of superior dose combinations but one cannot

infer anything beyond the observed doses if the nature of dose response relation-
ship is not known. Hence, it might be interesting to extend our bootstrap based
multiple testing approach to a modelling framework and make inference on the
dose-response relationship in drug combination studies.
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