
• MCP-Mod [1, 2] is a methodology for dose-response testing and dose estimation in Phase II dose-finding trials

• MCP-Mod takes uncertainty about the underlying dose-response shape into account by performing multiple contrast tests, which are optimal 

under different candidate dose-response models

• We propose an extension of the MCP part of MCP-Mod to trials with multiple populations of interest, for example a subgroup and the 

full population

• Our proposed testing procedures control the family-wise error rate across all populations and candidate models

A multiple comparison procedure for dose-finding trials 

with subpopulations
Marius Thomas1, Björn Bornkamp1, Martin Posch2 and Franz König2

1 Statistical Methodology & Consulting, Novartis Pharma AG, Basel, Switzerland
2 Section of Medical Statistics, Medical University of Vienna, Vienna, Austria

Notation and model:
• In each population P ∈ {F, S, C} we denote by 

• 𝑛𝑖
(𝑃) the number of patients in dose group 𝑖 (𝑛𝑖

(𝐹) = 𝑛𝑖
(𝑆) + 𝑛𝑖

(𝐶))

• ത𝑌𝑖
(𝑃)

the sample mean in dose group 𝑖

• 𝑠(𝑃) the sample standard deviation in population P

• Model for a normally distributed response:
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2 𝑖𝑖𝑑,

𝑖 = 1,… , 𝑘, 𝑗 = 1,… , 𝑛𝑖
𝑃 , 𝑃 = 𝑆, 𝐶

Multiple contrast tests:  

• For each candidate model 𝑚 = 1,… ,𝑀 and each considered population P we test
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using contrast test statistics
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Aim: Control the FWER over tests for all candidate models and all populations
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FWER control and power for simulated trials
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Conclusions and discussion

Family-wise error rate control

• Proposed approaches control FWER under different assumptions for variances in the 

subpopulations

• Can increase power to detect a significant dose-response signal

• Model selection performance similar as for single population MCP

• Approach can also be used for multiple (overlapping) subgroups

• Extensions to generalized parametric models possible (using multivariate normal 

approximations)

• Extension of Mod part remains as an open problem

Under homoscedasticity (𝜎𝑺
𝟐 = 𝜎𝑪

𝟐):

• 𝑠(𝑃) = 𝑠 is the pooled variance estimator (pooled over doses)

• 𝑇1
(𝐹), … , 𝑇𝑀

𝐹 , 𝑇1
(𝑆), … , 𝑇𝑀

𝑆 , 𝑇1
(𝐶), … , 𝑇𝑀

𝐶 jointly follow 𝑀𝑉𝑇(0, 𝑅, 𝜐)-

distribution with 𝜐 = 𝑛 − 3𝑘 degrees of freedom and correlation matrix
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Simulated trial design: 
• 5 dose levels, 75 patients on each 

dose level
• Prevalence of S: 0.25, 0.5, 0.75 (on 

each dose level)
• Generate normally distributed data 

under the null hypothesis (constant 
model) and for different candidate 
shapes under the alternative

Results for homoscedastic scenarios (𝜎𝑺
𝟐 = 𝜎𝑪

𝟐):

Results for heteroscedastic scenarios (𝜎𝑺
𝟐 = 𝟎. 𝟓𝜎𝑪

𝟐):

• FWER control guaranteed (joint 
distribution is known)

• Multi-population testing 
increases power, when subgroup 
is large with a great effect 
(compared to complement)

• MultDF approximation less 
conservative than MinDF and 
controls FWER at close to 
nominal level even for small 
sample sizes

• With MP-MultDF clear increases 
in power over SP in all scenarios, 
even if the subgroup does not 
have an increased treatment 
effect

Subgroup effect scenarios: 
1. Same treatment effect in S and C
2. Only a treatment effect in S, no treatment 

effect in C
3. Treatment effect in S is double the effect 

in C

Multiple candidate models:
• We consider M candidate models
• For each candidate model we can obtain 

contrast coefficients 𝑐𝑚1, … , 𝑐𝑚𝑘 with optimal 
power

• MCP-Mod uses the joint distribution of the test statistics to determine critical  

values (Max t-test)

• Here the joint distribution depends on assumptions we make for the variance in 

the populations S and C

• Each submatrix is of dimension 𝑀𝑥𝑀, the correlation 

structure depends on candidate models and the overlap 

between populations

Under heteroscedasticity (𝜎𝑺
𝟐 ≠ 𝜎𝑪

𝟐):

• Pooled variance estimation not appropriate, variance estimation marginal

• Joint distribution no longer multivariate 𝑡, approximations necessary 

• Possible approximations for joint distribution:

1. Multivariate normal distribution [MP-Normal]

2. Multivariate t-distribution with minimum degrees of freedom [MP-MinDF]

3. Multivariate t-distribution with multiple degrees of freedom [3]: For each 
test statistic obtain an adjusted p-value from a multivariate t-distribution 
with the degrees of freedom for that test statistic [MP-MultDF]

Multiple contrast tests in multiple populations

Setting

• Phase II randomized dose-finding trial with 𝑘 doses
• Prespecified subgroup (for example based on predictive biomarker)
• Three populations of interest: 

full population (F), subgroup (S) and complement (C)

• Aim: Establish significant dose-response signal in at least one of the populations
• Possible testing strategies:

1. Single population [SP]: only test in F, standard MCP-Mod
2. Multi-population I [MP (F + S)]: tests in F and S
3. Multi-population II [MP (F + S + C)]: tests in all populations


