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Objective
Clinical trials allowing for confirmatory testing of
pre-defined subgroups in addition to investigating
the treatment effect in the overall study popula-
tions have gained popularity [1, 3, 4, 5]. However,
often too optimistic assumptions are taken on the
actual size of the biomarker defined subgroups in
the planning phases of trials. For example, if
the observed prevalence is lower than expected,
we might experience power loss or a delay in the
trial conduct. In oncology trials, there are often
several genetically defined subpopulations avail-
able. Instead of pre-defining the test of a single
subgroup, we investigate clinical trial designs in
which the subgroup to be tested is selected based
on the data observed in the trial, e.g. by selecting
the largest subgroup. The observed data is used
to derive multiplicity adjusted tests.

Subgroup Selection
Methods
Consider a clinical trial with an experimental
treatment being compared to a standard of care,
in which there are also some potential candidate
subgroups that might be of interest and one of
them will be tested at the end of the trial. The
aim is to find a subgroup that would have the
highest chance to reject the null hypothesis. For
simplicity we assume that only one subgroup will
be selected to be tested at the end of the trial.
Let F denote the full population and Sk (k =
1, ..., m) the subgroups of interest, whereby here
we just consider the situation of disjoint sub-
groups.
Three data-driven approaches for subgroup selec-
tion at the end of the trial are considered:
• the highest observed prevalence,
• the highest product of the observed prevalence

and pooled blinded mean,
• the highest pooled blinded variance.
The approaches are later compared to tests with
pre-defined subgroups. All these procedures will
control the type I error despite the data depen-
dent selection, as under the null these selection
rules are independent from the test statistics.

Simulations
Consider a setting with two disjoint subgroups
with prevalences: λS1 = λS2 = 0.5. Let the total
sample size be equal to 800 patients with desired
effect in the full population δF = 0.2 to achieve
power 1 − βF = 0.8 and with one-sided type I
error α = 0.025. Consider no and a high effect
in S1: δS1 = (0, 1.5δF ) and vary the effect δS2

from 0 to 2δF . Under such scenario the effect
in F varies depending on the effect sizes in the
subgroups. Let S∗ denote the selected subgroup
to be tested at the end of the trial.

Results
In the Figure below one can see the probability
to reject the selected subgroup for the three selec-
tion approaches compared to testing pre-defined
S1 or S2 only. It can be seen that data-driven
selection procedures are more robust than sim-
ply choosing S1 or S2 if the effects in pre-selected
subgroups are low. The product of pooled mean
and observed prevalence outperforms the other
two selection procedures.
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Multiplicity Adjustments
After a subgroup is selected a multiplicity adjust-
ment for testing F and S∗ within the closed test-
ing is performed (see [2]). We consider 4 multiple
testing procedures:
• Bonferroni-Holm,
• Hierarchical procedure where S∗ can only be

rejected if F is rejected,
• Hierarchical procedure where F can only be

rejected if S∗ is rejected,
• Method proposed by Spiessens and Debois

(2010) using group sequential methodology
utilising observed prevalence (S-D).

The four methods and a hierarchical testing pro-
cedure with pre-defined selection of either S1 or
S2 are compared. For S-D approach the signifi-
cance value for testing F was set to: αF = 0.02.
Plot below shows the disjunctive power (power to
reject any hypothesis) for all approaches. It can
be seen that all hierarchical tests perform well
only if the effects in chosen subgroups are large.
Whenever the effects in subgroups are different,
Bonferroni-Holm and S-D outperform hierarchi-
cal procedures and are more robust. As 2% of α
was spent on F in S-D approach it has slightly
lower power when F does not have a high effect.
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Probability to Reject
Individual Hypotheses
In the Figure below probabilities to reject individ-
ual hypotheses: the full population, any subgroup
or individual subgroups are reported for the selec-
tion procedure based on observed prevalence and
pooled mean for S-D multiplicity adjustment. It
can be seen that the power to reject the selected
subgroup and the power to reject the full popu-
lation tend to have values similar to those of pre-
defined subgroups with a high effect, allowing one
to make the correct selection procedure at a low
cost of power loss.

Selection for S&D using product of
observed prevalence and pooled mean
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Conclusions
• Data-driven subgroup selection procedures can

be a valuable and robust strategy for subgroup
selection.

• Method proposed by Spiessens and Debois
(2010) is more robust than other approaches
(different α allocation can be further
investigated).

• If effects in subgroups are different, S-D and
Bonferroni-Holm gain a lot of power compared
to pre-defined subgroup selection.
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