

Cancer Phase I trial design using drug combinations when a fraction of dose limiting toxicities is attributable to one or more agents

José L. Jiménez¹, Mourad Tighiouart², Mauro Gasparini¹

¹Politecnico di Torino, Turin, Italy ²Cedars - Sinai Medical Center, Los Angeles, California, USA

EFSPI Workshop on Regulatory Statistics Basel, Switzerland September 25th, 2018

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 633567

Motivation

- 2 Dose-toxicity Model
- Ose Escalation Algorithm
- 4 Design Operations Characteristics
- 5 Simulation Results
- 6 Model Misspecification

Motivation

- 2 Dose-toxicity Model
- 3 Dose Escalation Algorithm
- 4 Design Operations Characteristics
- 5 Simulation Results
- 6 Model Misspecification

• Design a cancer phase I trial combining a cytotoxic with a biological agent.

• The clinician can attribute certain toxicities to one of the drugs.

Questions:

- Can we incorporate this information?
- How does it affect?

Motivation

2 Dose-toxicity Model

- 3 Dose Escalation Algorithm
- 4 Design Operations Characteristics
- 5 Simulation Results
- 6 Model Misspecification

Some notation:

- Let D be the dose limiting toxicity (DLT) or toxicity binary indicator.
- Let A be the attribution binary indicator.
- Let (δ_1, δ_2) indicate to which drug the toxicity is attributed (i.e., $(\delta_1 = 1, \delta_2 = 0)$ represents a toxicity attributed to drug 1).
- Let η represent the fraction of toxicity attributions and π the probability of DLT.

Depending on the outcomes, we have three different types of data.

- Patients with no toxicity (D),
- Patients with non attributable toxicity (D, A),
- Patients with attributable toxicity $(D, A, \delta_1, \delta_2)$.

- $\pi = \pi^{(1,0)} + \pi^{(0,1)} + \pi^{(1,1)}$.
- We employ a copula model known as the Gumbel model [1, 2].

$$\begin{aligned} \pi^{(\delta_1,\delta_2)} &= (x^{\alpha})^{\delta_1} \left(1-x^{\alpha}\right)^{1-\delta_1} (y^{\beta})^{\delta_2} \left(1-y^{\beta}\right)^{1-\delta_2} \\ &+ (-1)^{(\delta_1+\delta_2)} x^{\alpha} \left(1-x^{\alpha}\right) y^{\beta} \left(1-y^{\beta}\right) \frac{e^{-\gamma}-1}{e^{-\gamma}+1}. \end{aligned}$$

(1)

Dose-toxicity model (II)

D	A	δ_1	δ_2	Contribution to the Likelihood	
0	I	_	-	$1-\pi$	
1	0	-	-	$\pi imes (1-\eta)$	
1	1	1	0	$\pi imes \eta imes rac{\pi^{(1,0)}}{\pi}$	
1	1	0	1	$\pi imes \eta imes rac{\pi^{(0,1)}}{\pi}$	
1	1	1	1	$\pi imes \eta imes rac{\pi^{(1,1)}}{\pi}$	

Prior distribution of the model parameters:

- $Pr(\alpha) = Uniform(0.2,2).$
- $Pr(\beta) = Uniform(0.2,2).$
- $Pr(\gamma) = Gamma(0.1, 0.1).$

Posterior distribution of the model parameters:

$$\Pr(\alpha, \beta, \gamma \mid \text{data}) \propto \\ \Pr(\alpha, \beta, \gamma) \times \prod_{i=1}^{n} \left[\left(\eta_i \times \pi_i^{(\delta_{1_i}, \delta_{2_i})} \right)^{A_i} \left(\pi_i \left(1 - \eta_i \right) \right)^{1 - A_i} \right]^{D_i} (1 - \pi_i)^{1 - D_i}.$$
⁽²⁾

Motivation

- 2 Dose-toxicity Model
- Ose Escalation Algorithm
- 4 Design Operations Characteristics
- 5 Simulation Results
- 6 Model Misspecification

- The first cohort in the trials receives the same dose combination. Hence (x₁, y₁) = (X_{min}, Y_{min}) and (x₂, y₂) = (X_{min}, Y_{min}).
- In the second cohort.
 - Patient 3 receives doses (x_3, y_3) , where $y_3 = y_1$ and x_3 is equal to the dose $x \in C$ such that

$$|\operatorname{Prob}(D=1|x, y=y_1) - \theta|$$

is closer to zero. If a toxicity was caused by drug A, then x_3 cannot be higher than x_1 .

• Patient 4 receives doses (x_4, y_4) where $x_4 = x_2$ and y_4 is equal to the dose $y \in C$ such that

$$|\mathsf{Prob}(D=1|x=x_2,y)-\theta|$$

is closer to zero. If a toxicity was caused by drug B, then y_4 cannot be higher than y_2 .

So Keep adding patients until the maximum sample size is reached.

Dose Escalation Algorithm (II)

Motivation

- 2 Dose-toxicity Model
- 3 Dose Escalation Algorithm
- 4 Design Operations Characteristics
 - 5 Simulation Results
 - 6 Model Misspecification

Safety:

- Average % of toxicities.
- % of trials with toxicity rate greater that $\theta + 0.05$ and $\theta + 0.10$.

Efficiency:

- Continuous doses:
 - Pointwise average relative minimum distance between the true MTD and the estimated MTD curves (average bias).
 - Pointwise % selection.
- Discrete doses:
 - Image: Selection of MTD selection.

MTD = Maximum Tolerated Dose

Motivation

- 2 Dose-toxicity Model
- 3 Dose Escalation Algorithm
- 4 Design Operations Characteristics
- **5** Simulation Results
- 6 Model Misspecification

Simulation Results (I)

Safety results:

		Average	% of trials	% of trials
		Average % of toxicition	with toxicity	with toxicity rate
		70 OF LOXICILIES	$rate > \theta + 0.05$	> heta+0.10
	$\eta = 0.00$	33.62	25.90	4.10
	$\eta = 0.10$	32.67	22.60	4.80
Scenario 1	$\eta = 0.25$	31.55	17.60	2.70
	$\eta = 0.40$	30.70	13.30	2.00
	$\eta = 0.00$	30.64	9.40	0.90
	$\eta = 0.10$	29.69	7.30	0.40
Scenario 2	$\eta = 0.25$	28.76	5.00	0.20
	$\eta = 0.40$	28.04	4.10	0.30
	$\eta = 0.00$	27.47	2.00	0.00
	$\eta = 0.10$	26.80	1.80	0.00
Scenario 3	$\eta = 0.25$	25.99	1.30	0.00
	$\eta = 0.40$	25.37	0.70	0.00

Simulation Results (II)

Efficiency results:

Average bias:

Simulation Results (III)

Efficiency results:

Average percent of selection:

% of times a set of recommended MTDs belongs to the true MTD set in a discrete set of doses.

	% of correct MTD recommendation for $ heta\pm 0.10$					
-		$\geq 25\%$	$\geq 50\%$	\geq 75%	100%	
$\eta = 0.00$		91.40	87.30	83.70	83.70	
$\eta=$ 0.10		92.50	87.80	83.90	83.90	
$\eta=$ 0.25	Scenario 1	90.90	87.70	83.80	83.80	
$\eta=$ 0.40		90.90	87.70	83.80	83.80	
$\eta = 0.00$		78.10	78.10	73.60	73.60	
$\eta=$ 0.10		79.80	79.80	73.90	73.90	
$\eta=$ 0.25	Scenario 2	83.00	83.00	75.50	75.50	
$\eta=$ 0.40		83.50	83.50	76.20	76.20	
$\eta = 0.00$		99.10	99.00	97.00	97.00	
$\eta=$ 0.10		99.30	98.60	95.10	95.10	
$\eta=$ 0.25	Scenario 3	97.10	96.40	91.90	91.90	
$\eta=$ 0.40		95.90	95.10	89.50	89.50	

Motivation

- 2 Dose-toxicity Model
- 3 Dose Escalation Algorithm
- 4 Design Operations Characteristics
- 5 Simulation Results
- 6 Model Misspecification

Dose level	1	2	3	4	1	2	3	4
	Scenario 1				Scenario 4			
4	0.28	0.41	0.55	0.68	0.04	0.09	0.17	0.32
3	0.25	0.35	0.48	0.60	0.03	0.06	0.12	0.23
2	0.22	0.30	0.40	0.51	0.02	0.05	0.09	0.16
1	0.19	0.26	0.34	0.43	0.02	0.03	0.06	0.11
	Scenario 2				Scenario 5			
4	0.17	0.29	0.45	0.62	0.12	0.26	0.48	0.71
3	0.14	0.23	0.35	0.50	0.09	0.19	0.36	0.57
2	0.12	0.18	0.27	0.38	0.07	0.14	0.26	0.43
1	0.09	0.14	0.19	0.27	0.05	0.10	0.18	0.30
	Scenario 3					Scen	ario 6	
4	0.37	0.72	0.92	0.98	0.78	0.94	0.99	1.00
3	0.26	0.59	0.85	0.96	0.68	0.90	0.97	0.99
2	0.18	0.44	0.74	0.91	0.57	0.83	0.94	0.98
1	0.12	0.30	0.59	0.82	0.45	0.73	0.90	0.97

Model Misspecification (II)

	% of correct MTD recommendation for $ heta\pm 0.10$					
		$\geq 25\%$	\geq 50%	\geq 75%	100%	
$\eta = 0.00$		82.90	75.60	55.40	55.40	
$\eta=$ 0.10	Sconaria 1	82.70	72.70	57.30	57.30	
$\eta=$ 0.25	Scenario 1	83.30	75.80	60.40	60.40	
$\eta=$ 0.40		80.60	73.10	57.60	57.60	
$\eta = 0.00$	Scenario 2	74.70	71.00	58.20	45.70	
$\eta=$ 0.10		77.00	73.50	53.60	44.60	
$\eta=$ 0.25		79.60	75.00	50.00	41.20	
$\eta=$ 0.40		77.30	73.10	47.90	37.80	
$\eta = 0.00$	Scenario 3	76.90	65.30	23.30	23.30	
$\eta=$ 0.10		72.50	61.80	21.90	21.90	
$\eta=$ 0.25		66.40	57.30	18.60	18.60	
$\eta=$ 0.40		66.10	54.70	15.70	15.70	

	% of correct MTD recommendation for $ heta\pm 0.10$					
		$\geq 25\%$	\geq 50%	\geq 75%	100%	
$\eta = 0.00$		98.80	98.80	87.80	87.80	
$\eta=$ 0.10	Sconaria 1	97.20	97.20	85.70	85.70	
$\eta=$ 0.25	Scenario 4	95.70	95.70	82.00	82.00	
$\eta=$ 0.40		95.20	95.20	76.20	76.20	
$\eta = 0.00$	Scenario 5	75.40	69.10	20.50	20.50	
$\eta=$ 0.10		71.80	62.80	20.40	20.40	
$\eta=$ 0.25		70.70	59.40	18.90	18.90	
$\eta=$ 0.40		71.20	60.50	16.70	16.70	
$\eta = 0.00$		83.60				
$\eta=$ 0.10	Companie 6	82.90				
$\eta = 0.25$	Scenario 0	84.80				
$\eta = 0.40$		87.20				

Motivation

- 2 Dose-toxicity Model
- 3 Dose Escalation Algorithm
- 4 Design Operations Characteristics
- 5 Simulation Results
- 6 Model Misspecification

Conclusions

• Bayesian adaptive design for drug combination trials that includes toxicity attributions.

• Improvement of safety results and percentage of MTD selection.

• This work was recently published:

Jimenez, J. L., Tighiouart, M., & Gasparini, M. (2018). Cancer phase I trial design using drug combinations when a fraction of dose limiting toxicities is attributable to one or more agents. *Biometrical Journal*.

• Not very robust when dose-toxicity is very different from a surface generated with the FGM model (further work).

Paul A Murtaugh and Lloyd D Fisher.

Bivariate binary models of efficacy and toxicity in dose-ranging trials. *Communications in Statistics-Theory and Methods*, 19(6):2003–2020, 1990.

Guosheng Yin and Ying Yuan.

A latent contingency table approach to dose finding for combinations of two agents.

Biometrics, 65(3):866–875, 2009.

Thank you for your attention!

Any question?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 633567