Joint modelling of PFS and OS in oncology
trials using the gamma threshold model

Enya Weber, Andrew Titman

Department of Mathematics and Statistics, Lancaster University

Motivation

In oncology trials, different clinical endpoints can be considered for the analysis of overall survival (OS).
Time-to-progression (TTP) 1s defined as the time from study entry to recurrence of the disease (e.g. tumour
growth). Progression-free survival (PFS) represents the time from study entry until cancer progression or death
depending on what occurs first. OS 1s the most important endpoint but often TTP or PES are strongly related
to overall survival. Observing OS may require long follow-up after time-to progression; long and expensive
trials might be the consequence. Progression-related endpoints are often used for the evaluation of treatment
effects on OS 1n order to gain efficiency in terms of costs and time. PFS can also be used as a direct surrogate
endpoint for OS for some cancers but 1s too stringent as an assumption for other type of cancers. Existing
challenges of assessing the efficiency 1n the analysis of OS using information on progression are to adequately
model the joint distribution of PFS and OS. It is of interest to investigate the extent to which existing modelling
approaches can increase the efficiency in assessment of the treatment effects on survival using PFS.

The Gamma Threshold model

One framework for modelling PFS and OS 1s based on assuming a semi-competing risks model, where a pa-
tient can experience both a terminal event and nonterminal event. The terminal event such as death censors the
nonterminal event such as progression but not vice versa. A new approach [1] of modelling semi-competing
risks data considers the events to arise through the first passage times of an unobserved stochastic growth
process. In other words, it can be considered as a threshold model with a fixed level for death and a random
level for progression of cancer. If the process crosses the level for relapse first, the random growth continues
until level for death has been crossed. If the process crosses the level for death first, it 1s stopped.

Notation and Definition

Gamma process
Consider a continuous-time stochastic process { D(t),¢ > 0}, which is a gamma process with a shape function
a(t) > 0 and scale parameter A > 0. If

e D(t) ~ I'(«(t),\) forany ¢t > 0,

e {D(t),t > 0} has independent increments,

e D(t1) — D(tg) ~ I'(a(t1) — afty), A) for any t1 > .

First passage time of a stochastic process

The first passage time T); of the process D(t) over a fixed threshold d > 0 is defined as the time until the

process crosses the level : T; = inf{t : D(t) > d}
Threshold model with a fixed level for death and random level for progression of cancer

e ['g : first passage time to a random theshold for relapse
o [ : first passage time to a fixed level ¢ > 0 for death.
o If S = 51 < c: After Tg is observed, the gamma process [D(t) continues until level ¢ has been crossed

o If S = 59 > c: The process is stopped when level c is crossed
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llustration of modelling semi-competing risks with a fixed level ¢ and a random level S

Evaluation of this modelling approach in terms of the implied transition
intensities of the observable process

Our 1nitial work 1n this project was to analyze this modelling approach in terms of the implied transition
hazards between the states of the observable process. We have derived an expression of the general haz-
ard function, hazard function given progression and hazard function without progression based on this new
modelling approach.
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P(D(t) > c) =

where ['(a(t), cA) is the upper incomplete gamma function.

— Hazard intensity h(t) = PLZ% ~ it (iiﬁéf (t))

e Hazard after progression

F[Tp=u<t)=P|Tp=u<t)= /o F(a(t)—a(s))lc = $)[s(s)ds

Y F(t4+8|Tp=u<t+8)—F(t| Tp=u<t))
1—F(t‘Tp=’LL<t>

— Hazard intensity: h(t|Tp =u < t) =
e Hazard without progression
F(t|Tp >t)=(1— Fg(c)) x P(D(t) > ¢)

1~ Fa(o)) x (F(t+0|Tp > Hj) — F(i|Tp > 1))
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S(t|Tp = t) = P(D(t) < e)(1 — Fg(c)) + /O PD(1) < 5)fo(s)ds

(t|Tp>t)
(t|Tp=t)

— Hazard intensity: h(t|Tp > t) = é

Extension of the model

As one of our aims 1s to see if the model implies any gain efficiency in estimating the treatment effect on OS,
we have extended the model by including covariates such as treatment. We use an accelerated failure time
model and replace the shape function a(t) by a(t exp(X ! p)). Other options for how to incorporate the treat-

ment effect might be to let the scale parameter A be a function of covariates, to put the covariates on threshold

c for death or on threshold .S for progression.
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Simulation

In order to illustrate and analyze the gamma threshold model with treatment effects, we simulated a dataset
using the threshold model with shape function of the gamma process. We consider the shape function as
v(t) = atP, where @ = 5 and 8 = 1. Let threshold ¢ for death be 7 and S be log-normally distributed. We
simulated 1000 realizations of the model. The distribution of the censoring time was based on a gamma dis-
tribution with parameter values, such that 7. is censored in 10% of observations. We also assume a treatment
effect of p = —0.3.

Model estimation In order to estimate the parameters of the gamma threshold model, we use the MLE’s. The
likelihood function compromises of contributions from the four possible cases of observed data: patients who
progress and then are censored without death; patients who progress and then die; patients who die before
progression; and patients who are censored without progression or death.

Results

The table below shows the true values of the gamma threshold model and the maximum likelihood estimates
of those parameters. Further, the standard errors calculated from the Hessian matrix and the 95% confidence
interval are included.

Parameters True values Estimates St.err. ClI
a 5 5235 0.264 (4.743,5.779)
b 1 0.946 0.030 (0.888, 1.007)
C 7 6.739 0.302 (6.172,7.357)
Lbs 2 1.942  0.045 (1.855, 2.033)
Os 0.25 0.143 0.013 (0.120, 0.170)
0 -0.3 -0.392  0.025 (-0.444, -0.347)

Based on the estimates, we have an illustration of the gamma threshold model in terms of the implied transi-
tion intensities of the observable process. The general hazard function, the hazard function given progression
and the hazard without progression are shown for both the treatment group and the control group. The curve
of the hazard function given progression depends on the time when progression occurs. For each treatment
group, the hazard function given progression i1s shown for specific times to progression (v = 1, u = 2 or u = 9).
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The curves of the derived transition hazards from the gamma
threshold model seem to be plausible. As expected, the implied
transition intensities show higher hazards in the control group
than in the treatment group. The hazard function given pro-
gression makes a jump up after progression occurs. However,
the performance of the model seems to depend on the scenario
regarding the progression of the data. According to the values
of the distribution of .S in our simulation scenario, quick pro-
gression 1s expected. However, if the progression occurs very
late, the hazard of death given progression 1s lower than hazard
of death before progression. That is quite unusual, as the risk of I I . . . .
death 1s usually expected to be higher after progression occurs.

Survival function of progression
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Conclusions

Our aim 1s to investigate approaches to joint modelling of PFS and OS and their efficiency in estimating the
treatment effect on OS using information on progression. We have investigated the new recently published ap-
proach of modelling semi-competing risks data since it seems to be a promising approach for that purpose. In
particular, incorporating the treatment to the gamma threshold model effect seems to be more convenient than
in a multi-state model, where treatment effects need to be estimated for every transition intensity. However, it
seems difficult to apply the model to real datasets, as it isn’t very flexible and robust in terms of modelling the
time to death and time to progression. A possible reason for this situation might be that two endpoints don’t
provide enough information to model the stochastic process based on the threshold model.
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