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INTRODUCTION

Pharmacokinetic (PK) studies usually consist in repeated measurements of
drug concentration obtained from a population of subjects. ⇒ Statistical
parametric approach commonly used to analyse this longitudinal data:
Mixed Effects Model Pinheiro and Bates (2000): yij is the observation of
subject i at time tij . Same regression function f is used for all the subjects,
but regression parameters φi differ between the individuals i :

yij = f (tij ;φi) + εij, , i = 1, . . .N , j = 1, . . . J .

φi ∼ i.i.dπ(·, β), εij ∼ i.i.dN (0, σ2)

the regression function f is solution of a system of ordinary differen-
tial equations (ODE).

ICompartment models are usually deterministic

IReal pharmacological processes are always exposed to influences that are
not fully understood or not feasible to model explicitly

IPK processes have both deterministic and stochastic components: drug
concentrations follow determinable trends but exact concentration at any
given time is not completely determined.

I Ignoring these phenomena in the modelling may affect the estimation of
PK parameters and the derived conclusions.
⇒ stochastic differential equations (SDEs) as natural extension of
deterministic ODEs

SDE and BROWNIAN MOTION

I SDE: differential equation in which one or more of the terms is a
stochastic process (=collection of random variables)

dz(t, φi) = F (z , t, φi)dt + γdBt

I Its solution, the diffusion process z , is again a stochastic process

ITypically, SDEs contain a variable which represents random white noise
calculated as the “derivative” (in Itô stochastic calculus sense) of the
Brownian motion B(t) → requires its own rules of calculus.

One-compartment SDE model

yij = z(tij ;φi) + εij ,

φi ∼ i.i.dN (µ,Ω), εij ∼ i.i.dN (0, σ2),

dz(t, φi) =

(
Dose keka

Cl
·−kat −kez(t, φ)

)
dt + γdBt,

z(t0) = 0.

Note: For γ = 0, the SDE reduces to the ODE.
Three, instead of only two, fundamentally different types of noise
are distinguished:

1. inter-subject variability ω2: variance of the individual parameters φi
2. measurement noise σ2: uncorrelated part of the residual variability asso-

ciated with dosing and sampling errors

3. dynamic noise γ2: random fluctuations around the corresponding theoret-
ical dynamic model.

Main objective of this work:
Reproduce and (possibly improve) the MCMC and SAEM based procedures
of Donnet and Samson (2008) maximum likelihood method to estimate the
parameter vector θ = ((µ,Ω), γ2, σ2) for these mixed models and applying
this method to a new dataset with unsatisfactory fit by deterministic ODEs.
Challenges:

1. Diffusion is nonlinear with respect to the individual parameters φi (are
appearing as exponent)→ likelihood of the corresponding nonlinear mixed
model has no analytical form.

2. Transition density of z (diffusion process) has generally no closed form.

Note: In the PK case, SDE is linear in z and thus, explicitly solvable →
mean and variance can be calculated and distribution of the diffusion z is
analytically known to be Gaussian

EULER-MARUYAMA (EM) APPROXIMATION OF DIFFUSION MODEL

EM is a scheme to approximate the trajectory of the SDE solution. Here, it is applied to
replace the (generally) untractable likelihood of the SDE by its closed form approximation
of the EM. In PK-setting, time intervals between observations too large to approximate well
→ auxiliary latent data points τ between every pair of observations tJ are introduced. By
enriching the observed data y with the missing data (w , φ), and by the Markov property
of the diffusion process, the complete data likelihood is analytically known:

Approximation w of the diffusion process

yij = wi ,nJ + εij ,

φi ∼ i.i.dN (µ,Ω), εij ∼ i.i.dN (0, σ2),

wi ,n = wi ,n−1 + hnF (wi ,n−1, τn−1, φi) + γ
√

hnξn,

hn = τn − τn−1,

w(t0, φi) = z(t0, φi),

ξn ∼ i.i.dN (0, 1).

COMBINATION OF MCMC AND SAEM

Proposal of candidates for φ and w at observation times through random walk Metropolis-
Hastings algorithm (a MCMC method) and for the w at latent measurement times using
Brownian bridges. Having found candidate values for w and φ which increase the like-
lihood, the estimates for θ are updated using the Stochastic Approximation Expectation
Maximization (SAEM) algorithm.

RESULTING ESTIMATIONS ON SIMULATED DATA

Figure 1: Individual concentrations for the pharmacokinetics of the
simulated data, 4 out of 36 patients.

Figure 2: Evolution of the SAEM
parameter estimates function of the
iteration number.

Parameter log(ke) log(ka) log(Cl) ωe ωa ωCl γ σ

true value -2.52 0.40 -3.22 0.10 0.10 0.10 0.45 0.32
initial value -3.00 1.00 -3.00 0.32 0.32 0.32 1.41 1.00
estimations (mean) -2.76 0.59 -3.26 0.02 0.06 0.02 2.28 0.78
estimations (st. dev.) 0.13 0.14 0.07 0.02 0.03 0.01 0.05 0.04

Table 1: Mean values and standard deviations of 5 PK studies simulated based on the given true values as in
Donnet and Samson (2008).

DISCUSSION

Our reproduction of the combined estimation method proposed by Donnet and Samson
(2008) estimates the PK parameters correctly. However, it needs further improvement
since the estimation of the different types of noise is not satisfactory yet and the overall
performance of our code is greatly dependent on the chosen starting values. Possibilities
are the replacement of Brownian bridges by diffusion bridges, to create dependency on the
process’ distribution, or a Particle MCMC algorithm which is expected to separate the
diffusion noise better.
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