Adaptive incorporation of animal data into phase | trials:
a robust Bayesian meta-analytic approach

Haiyan Zheng!*, Lisa V. Hampson?, Simon Wandel?

!Department of Mathematics and Statistics, Lancaster University, U.K.
2Novartis Pharma AG, CH-4002 Basel, Switzerland
*Email: h.zheng3@lancaster.ac.uk

Acknowledgement: Beat Neuenschwander

IDEAS Dissemination Workshop
26th September 2018

IDEAS

H Zheng, LV Hampson, S Wandel IDEAS 2018 1/14

Medical and Phar
Sta!lstlcs Resealch IJnIt



h.zheng3@lancaster.ac.uk

Motivation

IND SUBMISSION

S

250
COMPOUNDS
PHASE

20t0 100
patients

* Current approaches use preclinical data only to determine a maximum starting dose

* Formal incorporation of preclinical data into phase | first-in-man trials
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Problem formulation

Context:
* Let i label the historical animal studies, i =1,..., M
* J; doses for evaluation: di, ..., dy;

* binary endpoint: toxicity or no-toxicity

Two-parameter logistic regression model: for j =1,...,J;,

logit(p;) = 01/ + exp(62:) log(dyj/ dref),
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Problem formulation

Context:
* Let i label the historical animal studies, i =1,..., M
* J;i doses for evaluation: di1, ..., dy,

* binary endpoint: toxicity or no-toxicity

Two-parameter logistic regression model: for j =1,...,J;,

logit(p;) = 01/ + exp(62:) log(dyj/ dref),

* Historical data = predict for new dose-toxicity parameters 8= = (61, 62/)
» Exchangeability: 0,01, ...,0m|u, ¥V ~ BVN(u, V)
* Main challenge for using historical animal data = new 6+ in a human trial

» the “interesting” region may be defined on very different dose intervals
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Translating an animal dose-toxicity curve

Probability of toxicity (%)

Animal dose region dose region

Dose (mg/kg)

* Solution: translate the animal dose-toxicity data onto a common scale
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Translating an animal dose-toxicity curve

Probability of toxicity (%)
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Animal dose region dose region

Dose (mg/kg)

* Solution: translate the animal dose-toxicity data onto a common scale
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Hierarchical modelling (1)

Thus, for M historical animal studies,
logit(pyj) = O1i + exp(02;) log (6.4, djj / dref),
where ¢ 4, index the species used in historical study i =1,..., M.
Let /* label the new first-in-man trial. We have
logit(pi+;) = 61+ + exp(02i+) log(dix;/ drer)-
This translation parameter J 4, leads to a feasible assumption of exchangeability:

91, . .,9/\/1,9,’*“1,7\” ~ BVN(;L7 \ll)
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Hierarchical modelling (1)

Thus, for M historical animal studies,
logit(pyj) = O1i + exp(02;) log (6.4, djj / dref),
where ¢ 4, index the species used in historical study i =1,..., M.
Let /* label the new first-in-man trial. We have
logit(pi+;) = 61+ + exp(02i+) log(dix;/ drer)-
This translation parameter J 4, leads to a feasible assumption of exchangeability:

91, . .,9/\/1,9,’*“1,7\” ~ BVN(;L7 \ll)

However, knowing A; € {51,..., 5k},
what if predictability of the human toxicity may vary across animal species?
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Hierarchical modelling (1)

Q: What if the predictability of human toxicity varies across animal species?

For illustrative purpose, assume M =6 and K = 3.

28
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Hierarchical modelling (1)

Q: What if the predictability of human toxicity varies across animal species?

For illustrative purpose, assume M =6 and K = 3.

Blluslaw ~ BVN(/“'SI7W)7
02,03, 04|ps,, ¥ ~ BVN(us,, V),
95,06|H537 Vo~ BVN(IJ537 V).

28

* K random-effects distributions for sharing info between studies
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Hierarchical modelling (1)

Q: What if the predictability of human toxicity varies across animal species?

For illustrative purpose, assume M =6 and K = 3.

Blluslaw ~ BVN(/“'SI7W)7
02,03, 04|ps,, ¥ ~ BVN(us,, V),
95,06|H537 Vo~ BVN(IJ537 V).

2
00
= Moreover,
“515u527”53|mvz’\’BVN(mvz)'

* K random-effects distributions for sharing info between studies

* One ‘supra-species’ random-effects distribution for sharing info across species
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Hierarchical modelling (11)

Q: What if the predictability of human toxicity varies across animal species?

For illustrative purpose, assume M =6 and K = 3.
61]ps,, V ~ BVN(us,, V),

02,03, 04|ps,, ¥ ~ BVN(us,, V),
0s, 06|15,V ~ BVN(us,, V).

2
00
= Moreover,
“515u527”53|mvz’\’BVN(mvz)'

* K random-effects distributions for sharing info between studies
* One ‘supra-species’ random-effects distribution for sharing info across species

* This model accounts for both between-study and between-species heterogen DEAS
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Robust borrowing of information from animals to humans

Relating the new parameters ¢;+ with historical parameters 6;s:

* Permitting borrowing from each animal species Sk, we define
01 |ps, , W ~ BVN(us, , W) with prior probability ws, .
* For the purpose of robustification, we stipulate

0+ ~ BVN(mo, Ry) with prior probability wrg,

K
where wg = 1— > ws,.

?UEAS

H Zheng, LV Hampson, S Wandel IDEAS 2018 7/ 14



Robust borrowing of information from animals to humans

Relating the new parameters ¢;+ with historical parameters 6;s:
* Permitting borrowing from each animal species Sk, we define
01 |ps, , W ~ BVN(us, , W) with prior probability ws, .
* For the purpose of robustification, we stipulate
0+ ~ BVN(mo, Ry) with prior probability wrg,
K

where wg = 1— > ws,.

Our hierarchical model is completed by specifying
* Weakly informative priors for the population means in K, M
* Half-normal priors for the variance parameters in ¥, ¥

* Uniform priors for the correlation coefficients in W, ?
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Practical dose conversion

One common practice for dose conversion is to perform Allometric scaling.
* Normalise body weight (BW) to body surface area (BSA)
* FDA fomulated the calculation of human equivalent dose (HED)

(BW/BSA) ,

HED (mg/kg) = Animal dose (mg/kg) x (BW/BSA),,
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Practical dose conversion

One common practice for dose conversion is to perform Allometric scaling.
* Normalise body weight (BW) to body surface area (BSA)
* FDA fomulated the calculation of human equivalent dose (HED)

(BW/BSA) ,

HED (mg/kg) = Animal dose (mg/kg) x (BW/BSA),,

* Uncertainty usually surrounds the translation factor when treated as a fixed constant
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Practical dose conversion

One common practice for dose conversion is to perform Allometric scaling.
* Normalise body weight (BW) to body surface area (BSA)
* FDA fomulated the calculation of human equivalent dose (HED)

(BW/BSA) ,

HED (mg/kg) = Animal dose (mg/kg) x (BW/BSA),,

* Uncertainty usually surrounds the translation factor when treated as a fixed constant
* We consider a , 84, ~ LN(X,~+?)
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Prior specification for d 4.

HED in mg/kg HED in mg/m?

Species BW (ke) BSA (m?)
Reference ~ Working range A ¥ A ¥
Mouse 0.02 (0.011, 0.034) 0.007
Rabbit 1.80 (0.900, 3.000) 0.150
Dog 10 (5, 17) 0.500
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Prior specification for ¢ 4,

. . 2
Species BW (kg) BSA (m?) ‘ HED in mg/kg HED in mg/m
Reference ~ Working range ‘ A ¥ A ¥
Mouse 0.02 (0.011, 0.034) 0.007
Rabbit 1.80 (0.900, 3.000) 0.150
Dog 10 (5, 17) 0.500

Specifying d.4; ~ LN()\,~) based on an optimiser:
© BW is commonly modelled using log-normal distribution in Biometrics literature

@ We then calibrate the log-normal distributions so that the 2.5th, 50th and 97.5th
percentiles are in good agreement with the reference and working range

© BSA is assumed to have negligible variation in adult animals and humans
@ Find the log-normal distributions for both (BW/BSA) , and (BW/BSA),,
@ Depending on the unit of human dose, 5.4, ~ LN(),~?) is therefore determined
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Prior specification for ¢ 4,

. . 2
Species BW (kg) BSA (m?) ‘ HED in mg/kg HED in mg/m
Reference ~ Working range ‘ A ¥ A ¥
Mouse 0.02 (0.011, 0.034) 0.007 -2.562  0.298  1.050 0.283
Rabbit 1.80 (0.900, 3.000) 0.150 -1.127  0.290  2.485 0.274
Dog 10 (5, 17) 0.500 -0.616  0.301  2.996 0.286

Specifying d.4; ~ LN()\,~) based on an optimiser:
© BW is commonly modelled using log-normal distribution in Biometrics literature

@ We then calibrate the log-normal distributions so that the 2.5th, 50th and 97.5th
percentiles are in good agreement with the reference and working range

© BSA is assumed to have negligible variation in adult animals and humans
@ Find the log-normal distributions for both (BW/BSA) , and (BW/BSA),,
@ Depending on the unit of human dose, 5.4, ~ LN(),~?) is therefore determined
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Simulation setting

An anti-cancer therapy AUY922 is to be evaluated with a phase | first-in-man trial.

* augment the phase | trial with animal data to estimate the target dose, TD25

* Historical animal data were collected from 3 dog studies

* Available human doses include 2, 4, 8, 16, 22, 28, 40, 54, 70 mg/m2

Nsub . Ntox

1. DLTs in dogs

2. DLTs in dogs

3. DLTs in dogs

Frequency
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Dose (mg/m?)
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Prior and toxicity scenarios
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* Simulated 2000 phase | dose-escalation trials (15 cohorts of 3 patients per trial)
Interim dose recommendations using animal & accumulating human toxicity gata
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Analysis models

We are interested in 4 analysis models for the comparison
(i)
(if)

(iii) Model C: Prior ambivalence about exchangeability assumption (wg = 0.5)
)

(iv

Model A: Fully exchangeability between 6;s and 8« (wg = 0)

Model B: High level of prior confidence in exchangeability assumption (wg = 0.3)

Model D: No borrowing of information from preclinical data (wg = 1)
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Simulation results

Proportion of times of dose declared as MTD (%)

Analysis model A A A B A C
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Simulation results

Analysis model A A A B A C D
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Conclusion

* We proposed a Bayesian meta-analytic approach for data augmentation

*

By introducing the possibility of non-exchangeability, our proposal can

» alleviate potential prior-data conflict
» allow for robust borrowing of information from animals to humans

>

Dose-escalation procedure based on the proposed model is safe and ethical

*

It is not limited to a particular setup, but can be applied more broadly

» synthesising data that have been recorded on a different measurement scale.
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