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Motivation

? Current approaches use preclinical data only to determine a maximum starting dose
? Goal: Formal incorporation of preclinical data into phase I first-in-man trials
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Problem formulation

Context:
? Let i label the historical animal studies, i = 1, . . . ,M
? Ji doses for evaluation: di1, . . . , diJi

? binary endpoint: toxicity or no-toxicity
Two-parameter logistic regression model: for j = 1, . . . , Ji ,

logit(pij) = θ1i + exp(θ2i) log(dij/dRef),

? Historical data ⇒ predict for new dose-toxicity parameters θi? = (θ1i , θ2i)

I Exchangeability: θi? , θ1, . . . , θM |µ,Ψ ∼ BVN(µ,Ψ)

? Main challenge for using historical animal data ⇒ new θi? in a human trial
I the “interesting” region may be defined on very different dose intervals
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Translating an animal dose-toxicity curve
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? Solution: translate the animal dose-toxicity data onto a common scale
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Hierarchical modelling (I)

Thus, for M historical animal studies,

logit(pij) = θ1i + exp(θ2i) log(δAi dij/dRef),

where δAi index the species used in historical study i = 1, . . . ,M.

Let i? label the new first-in-man trial. We have

logit(pi?j) = θ1i? + exp(θ2i? ) log(di?j/dRef).

This translation parameter δAi leads to a feasible assumption of exchangeability:

θ1, . . . , θM , θi? |µ,Ψ ∼ BVN(µ,Ψ)

However, knowing Ai ∈ {S1, . . . , SK},
what if predictability of the human toxicity may vary across animal species?
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Hierarchical modelling (II)

Q: What if the predictability of human toxicity varies across animal species?

For illustrative purpose, assume M = 6 and K = 3.

θ1|µS1 ,Ψ ∼ BVN(µS1 ,Ψ),

θ2, θ3, θ4|µS2 ,Ψ ∼ BVN(µS2 ,Ψ),

θ5, θ6|µS3 ,Ψ ∼ BVN(µS3 ,Ψ).

Moreover,
µS1 ,µS2 ,µS3 |m,Σ ∼ BVN(m,Σ).

? K random-effects distributions for sharing info between studies
? One ‘supra-species’ random-effects distribution for sharing info across species
? This model accounts for both between-study and between-species heterogeneity
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Robust borrowing of information from animals to humans

Relating the new parameters θi? with historical parameters θis:

? Permitting borrowing from each animal species Sk , we define

θi? |µSk ,Ψ ∼ BVN(µSk ,Ψ) with prior probability wSk .

? For the purpose of robustification, we stipulate

θi? ∼ BVN(m0,R0) with prior probability wR ,

where wR = 1−
K∑

wSk .

Our hierarchical model is completed by specifying priors for the hyperparameters
? Weakly informative priors for the population means in µSk , m
? Half-normal priors for the variance parameters in Ψ, Σ

? Uniform priors for the correlation coefficients in Ψ, Σ
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Practical dose conversion

One common practice for dose conversion is to perform Allometric scaling.
? Normalise body weight (BW) to body surface area (BSA)
? FDA fomulated the calculation of human equivalent dose (HED)

HED (mg/kg) = Animal dose (mg/kg)×
(BW/BSA)A
(BW/BSA)H

? Uncertainty usually surrounds the translation factor when treated as a fixed constant
? We consider a log-normal prior, δAi ∼ LN(λ, γ2)
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Prior specification for δAi

Species BW (kg) BSA (m2) HED in mg/kg HED in mg/m2

Reference Working range λ γ λ γ

Mouse 0.02 (0.011, 0.034) 0.007

-2.562 0.298 1.050 0.283

Rabbit 1.80 (0.900, 3.000) 0.150

-1.127 0.290 2.485 0.274

Dog 10 (5, 17) 0.500

-0.616 0.301 2.996 0.286

Specifying δAi ∼ LN(λ, γ) based on an optimiser:
1 BW is commonly modelled using log-normal distribution in Biometrics literature
2 We then calibrate the log-normal distributions so that the 2.5th, 50th and 97.5th

percentiles are in good agreement with the reference and working range
3 BSA is assumed to have negligible variation in adult animals and humans
4 Find the log-normal distributions for both (BW/BSA)A and (BW/BSA)H

5 Depending on the unit of human dose, δAi ∼ LN(λ, γ2) is therefore determined
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Simulation setting

An anti-cancer therapy AUY922 is to be evaluated with a phase I first-in-man trial.
? Aim: augment the phase I trial with animal data to estimate the target dose, TD25
? Historical animal data were collected from 3 dog studies
? Available human doses include 2, 4, 8, 16, 22, 28, 40, 54, 70 mg/m2
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Prior and toxicity scenarios

0

25

50

75

100

2 4 8 16 22 28 40 54 70

Dose (mg m2)

P
rio

r 
pr

ob
ab

ili
ty

 o
f t

ox
ic

ity
 (

%
)

wR = 0 wR = 0.3 wR = 1
A

0

25

50

75

100

2 4 8 16 22 28 40 54 70

Dose (mg m2)

To
xi

ci
ty

 in
te

rv
al

 p
ro

ba
bi

lit
ie

s 
(%

)

Overdose Target interval Underdose
B

0.00

0.05

0.10

0.15

0 10 20 30

Probability of toxicity (%)

P
rio

r 
pr

ob
ab

ili
ty

 d
en

si
ty

4 mg m2 8 mg m2
C

0
20

40
60

80
10

0

Scenario 1

Dose (mg/m2)

P
ro

ba
bi

lit
y 

of
 to

xi
ci

ty
 (

%
)

2 4 8 16 22 28 40 54 70

0
20

40
60

80
10

0

Scenario 2

Dose (mg/m2)

P
ro

ba
bi

lit
y 

of
 to

xi
ci

ty
 (

%
)

2 4 8 16 22 28 40 54 70

0
20

40
60

80
10

0

Scenario 3

Dose (mg/m2)

P
ro

ba
bi

lit
y 

of
 to

xi
ci

ty
 (

%
)

2 4 8 16 22 28 40 54 70

0
20

40
60

80
10

0

Scenario 4

Dose (mg/m2)

P
ro

ba
bi

lit
y 

of
 to

xi
ci

ty
 (

%
)

2 4 8 16 22 28 40 54 70

? Simulated 2000 phase I dose-escalation trials (15 cohorts of 3 patients per trial)
? Interim dose recommendations using animal & accumulating human toxicity data
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Analysis models

We are interested in 4 analysis models for the comparison
(i) Model A: Fully exchangeability between θis and θi? (wR = 0)
(ii) Model B: High level of prior confidence in exchangeability assumption (wR = 0.3)
(iii) Model C: Prior ambivalence about exchangeability assumption (wR = 0.5)
(iv) Model D: No borrowing of information from preclinical data (wR = 1)

H Zheng, LV Hampson, S Wandel A robust Bayesian hierarchical model IDEAS 2018 12 / 14



Simulation results

Analysis model A B C D
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Conclusion

? We proposed a Bayesian meta-analytic approach for data augmentation
? By introducing the possibility of non-exchangeability, our proposal can

I alleviate potential prior-data conflict
I allow for robust borrowing of information from animals to humans

? Dose-escalation procedure based on the proposed model is safe and ethical
? It is not limited to a particular setup, but can be applied more broadly

I synthesising data that have been recorded on a different measurement scale.
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