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Introduction

Investigations of treatment effect heterogeneity 

routinely part of many trials in Phase II and III

• Common questions: 

• Is the treatment effect the same across the population?

• Can we define a subgroup of patients with increased treatment effects?

• Usually exploratory

• Based on pre-specified baseline covariates in moderate numbers (< 

30)

• Statistically challenging: multiplicity, lack of power

Here we consider these analyses in the context of 

dose-finding trials
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Motivating example

Phase II dose-finding trial

• N = 270

• Dose levels: 0, 25, 50, 100

• Continuous endpoint (change from baseline)

• 10 baseline covariates (6 categorical, 4 continuous)

Exploratory analyses investigating treatment effect 

heterogeneity/ possible subgroups

• Do baseline covariates interact with treatment/dose?

• Are there subgroups with higher treatment effects?

• Are there subgroups requiring different doses?

Available subgroup identification methods usually designed for 

two-arm trials

Here we want to take underlying dose-response relationship 

into account
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General idea

• Standard Emax:

𝐸0 + 𝐸𝑚𝑎𝑥

𝑑𝑜𝑠𝑒ℎ

𝐸𝐷50
ℎ + 𝑑𝑜𝑠𝑒ℎ

• In our setting with baseline covariates 

𝒙:

𝐸0(𝒙) + 𝐸𝑚𝑎𝑥(𝒙)
𝑑𝑜𝑠𝑒ℎ

𝐸𝐷50
ℎ (𝒙) + 𝑑𝑜𝑠𝑒ℎ
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Covariates on E0: 

Prognostic covariates 

(modify response 

independent of treatment)

Covariates on Emax or ED50: 

Predictive covariates (modify 

treatment effects)

Main aim: Identify predictive covariates, which can then be used to 

define subgroups



A possible approach

We previously proposed model-based recursive partitioning (mob) 

(Seibold et al., 2016, Thomas et al., 2018) for subgroup 

identification in this setting

• Mob is a tree-based method, which identifies subgroups with 

differential dose-response

• Uses Bonferroni corrections to control for multiplicity

• Mob applied to the example:
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Mob: Pros and Cons

Main advantages of mob
• Quite easy to use

• Finding suitable cut-offs part of the algorithm

• Good performance with regards to variable selection and subgroup 
identification in simulations

• Can handle covariate-covariate interactions and non-linear covariate 
effects

Drawback: Dose-response modeling
• Dose-response models are fitted separately in each subgroup, without 

borrowing information from other subgroups

• Models don‘t take uncertainty with regards to subgroup selection into 
account

• Doesn‘t allow modeling covariate effects on specific dose-response 
parameters

Can we find a method, that has similar variable selection 
performance as  mob, while improving on the modeling? 

Here we propose a Bayesian hierarchical dose-response model
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Bayesian dose-response model

For normally distributed data

• Data: (𝑌, 𝑑, 𝑥(1), … , 𝑥(𝑘) )

• 𝑌: response variable

• 𝑑: dose variable

• 𝑥(1), … , 𝑥(𝑘) : baseline covariates of interest for subgroup analyses
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𝑌 ~ 𝑁(𝜇, 𝜎2)

μ = 𝐸0 + 𝐸𝑚𝑎𝑥

𝑑ℎ

𝐸𝐷50
ℎ
+ 𝑑ℎ

• Choose non-informative priors 

for 𝜎, ℎ, 𝛼𝐸0 , 𝛼𝐸𝑚𝑎𝑥
,𝛼

𝐸𝐷50

• Priors for 𝜷, 𝜸, 𝜹?

• Non-informative priors 

would lead to overfitting

• Instead use shrinkage/ 

variable selection priors

• Here we consider Spike-

and-slab and horseshoe



Considered Shrinkage priors

Spike-and-Slab (Mitchell & Beauchamp, 1988, George & 

McCulloch, 1993):

𝜃𝑗 ~𝑁 0, 𝑐2𝜆𝑗 , j = 1, … , k

𝜆𝑗 ~ 𝐵𝑒𝑟𝑛 𝑝

• Gold standard for Bayesian variable selection

• Mixture between ‘spike‘ at zero and normally-distributed ‘slab‘ with 

variance 𝑐2

• 𝑝 represents inclusion probability, e.g. if p = 0.2 we expect 20% of the 

covariates to have a coefficient different from zero
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Considered Shrinkage priors

Spike-and-Slab (Mitchell & Beauchamp, 1988, George & 
McCulloch, 1993):

𝜃𝑗 ~ 𝑁 0, 𝑐2𝜆𝑗 , j = 1, … , k

𝜆𝑗 ~ 𝐵𝑒𝑟𝑛 𝑝

• Gold standard for Bayesian variable selection

• Mixture between ‘spike‘ at zero and normally-distributed ‘slab‘ with 
variance 𝑐2

• 𝑝 represents inclusion probability, e.g. if p = 0.2 we expect 20% of the 
covariates to have a coefficient different from zero

Horseshoe (Carvalho et al., 2010, Piironen & Vehtari, 
2017):

𝜃𝑗~𝑁(0, τ2𝜆𝑗
2), j=1,...,k

𝜆𝑗~ 𝐶+(0, 1)

τ ~ 𝐶+(0, η2)

• Good theoretical properties, clear separation of noise and large effects

• Combination of local (𝜆𝑗)  and global (τ) shrinkage component

• η determines number of non-zero coefficients a priori

• Wide tails can lead to convergence issues, when using MCMC

• Regularized horseshoe with improved MCMC sampling properties 
proposed by Piironen & Vehtari (2017)
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Back to the dose-response model

Model specification using horseshoe priors 
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Horseshoe priors on coefficients:

• Same local shrinkage components for 

covariate effects on Emax and ED50

• Reduces model complexity

• Represents focus on distinction 

prognostic vs predictive



Back to the dose-response model

Model specification using horseshoe priors 
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Horseshoe priors on coefficients:

• Same local shrinkage components for 

covariate effects on Emax and ED50

• Reduces model complexity

• Represents focus on distinction 

prognostic vs predictive

Independent priors on local shrinkage 

components (option 1):

• Shrinkage for prognostic and predictive 

effects of the same covariate 

independent

• Possible to include interactions 

(predictive effects) without main effects 

(prognostic effects)



Back to the dose-response model

Model specification using horseshoe priors
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Horseshoe priors on coefficients:

• Same local shrinkage components for 

covariate effects on Emax and ED50

• Reduces model complexity

• Represents focus on distinction 

prognostic vs predictive

Dependent priors on local shrinkage 

components (option 2):

• Idea: Don’t shrink prognostic effects 

more than corresponding predictive 

effects

• Use 𝜆𝑗
(𝑝𝑟𝑒𝑑)

as lower bound for 𝜆𝑗
(𝑝𝑟𝑜𝑔)

• Reduces probability for ‘interaction 

without main effect’ - outcomes



Simulation study to compare priors

• Simulation setup (default scenarios):

• 5 dose levels: 0, 12.5, 25, 50, 100

• 50 patients on each dose (250 patients in total)

• 𝜎 = 0.25

• h = 1

• 10 independent standard normally distributed covariates 𝑥1, … , 𝑥10

• Scenarios for Emax model parameters:

• Comparisons of interest:

• Spike-and-Slab vs horseshoe vs regularized horseshoe

• Independent priors on local shrinkage components for prognostic and predictive effects vs Dependent priors (as on 
previous slide)

• Include oracle (true model) and model without shrinkage as general comparators
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Scenario 𝐸0(𝒙) 𝐸𝑚𝑎𝑥(𝒙) 𝐸𝐷50(𝒙)

1: Null 1.2 0.17 20

2: Only prog. 1.2 + 0.1𝑥1 + 0.1𝑥2 + 0.05𝑥3 0.17 20

3: Prog. + pred. 1.2 + 0.1𝑥1 + 0.1𝑥2 + 0.05𝑥3 0.17 + 0.1𝑥2 − 0.1𝑥3 20 ∗ exp(−0.75𝑥2 + 0.75𝑥3)

4: Only pred. 1.2 0.17 + 0.1𝑥2 − 0.1𝑥3 20 ∗ exp(−0.75𝑥2 + 0.75𝑥3)



Simulation results 1: No treatment effect heterogeneity
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Estimation of individual 

treatment effect curves:

• Shrinkage priors all close to 

oracle

• Model without shrinkage 

much worse

• No big differences between 

shrinkage priors

Variable selection:

• Close to zero false positive 

identifications of predictive 

covariates

• Negligible differences 

between different shrinkage 

priors



Simulation results 2: Existing Treatment effect 

heterogeneity
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Estimation of individual 

treatment effect curves:

• Shrinkage priors generally 

better than model without 

shrinkage

• Horseshoe vs Spike-and-

slab depends on scenario

• Dependent priors improve 

estimation in first scenario, 

are slightly worse in second

Variable selection:

• Only correct covariates are 

selected often by shrinkage 

priors

• Distinguishing prognostic 

from predictive covariates 

unproblematic



Simulation study: Conclusions

• All shrinkage priors show desired behavior of identifying relevant 
predictive covariates, while reducing false positives

• Based on our simulations horseshoe gives more consistent 
results than Spike-and-slab

• Essentially no differences between horseshoe and reg. horseshoe 
in performance; reg. horseshoe preferred choice, because of 
better MCMC sampling properties

• Dependent priors increase chance to detect relevant predictive 
covariates in scenarios with prognostic and predictive effects

• Similar results obtained for larger sample sizes and larger number 
of covariates

All in all dependent regularized horseshoe seems like a good 
default choice

14



Comparison to mob

Compare the Bayesian hierarchical model to mob for different types 

of covariate effects:
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• Variable selection performance relatively similar, mob slightly better for 

non-linear scenarios



Back to the example

Phase II dose-finding trial

• N = 270

• Dose levels: 0, 25, 50, 100

• Continuous endpoint (change from baseline)

• 10 baseline covariates (6 categorical, 4 continuous)

Now analyzed with Bayesian approach (reg. HS)

Posterior summaries for local shrinkage components           Individual dose-response curves
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Discussion

The presented approach makes use of Bayesian dose-response models 
with shrinkage priors to deal with the challenges of subgroup identification

• Reduces rate of false positive findings through shrinkage

• Can handle different types of outcomes and different types of covariates 
(continuous, categorical, binary)

• Allows estimation of individual dose-response curves

• Limitations: assumes linear function of covariates on DR-parameters, no 
covariate-covariate interactions, choice of hyperparameters for shrinkage 
priors non-trivial

How to identify a subgroup with increased treatment effect based on the 
model? Some possibilities:

• Threshold on posterior individual treatment effect predictions (posterior 
median or other quantile)

• Use identified predictive covariates to define subgroup

• Fit regression tree with individual treatment effect predictions as target and 
covariates as features (see Foster et al., 2011)
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