

Bayesian Knowledge Integration for an *in Vitro-in Vivo* Correlation Model

Elvira Erhardt¹, Moreno Ursino², Tom Jacobs³, Jeike Biewenga³, Mauro Gasparini¹

¹Politecnico di Torino, IT ²INSERM Paris, FR ³Janssen Pharmaceutica, BE

IDEAS Summer School III, 23-27 September 2018 Basel, Switzerland

$$v \times y = z$$

$$v = 14r + 10$$
$$y = 3n - 2$$

 $v \times y = z$

 \Rightarrow *v* \times *y* is a **convolution**.

$$v \times y = z$$

$$v = 14r + 10$$
$$y = 3n - 2$$

 \Rightarrow *v* \times *y* is a **convolution**.

\Rightarrow Knowing z and y, a **de**convolution can be performed to find v.

$$v \times y = z$$

[absorption function] × [disposition function]
= [blood concentration-time curve]

Convolution and **deconvolution** methods are frequently used to establish an...

In Vitro-In Vivo Correlation (IVIVC)

Defined by the U.S. Food and Drug Administration (FDA) as "predictive mathematical model describing the relationship between an *in vitro* property of a dosage form and an *in vivo* response".

Tool to predict entire *in vivo* drug concentration–time course based on *in vitro* drug release profiles \rightarrow supports **biowaivers** \rightarrow **saves resources**.

<u>Aim:</u>

Establish a new method of IVIVC modelling, overcoming the disadvantages of current IVIVC methodology (averaged data, artificial certainty, deconvolution). Case study: **transdermal patch**.

Data sets and general idea

Data sets and general idea

Data sets and general idea

Model 1: *in vitro* absorption/permeation

Cumulative amount of drug passed through the skin

$$\mathsf{PDF}_W(t; h, s) = rac{h}{s} \left(rac{t}{s}
ight)^{h-1} \exp\left\{-\left(rac{t}{s}
ight)^h
ight\}$$
 $\mathsf{CDF}_W(t; h, s) = 1 - \exp\left\{-\left(rac{t}{s}
ight)^h
ight\}.$

 CDF_W Weibull distribution with time $t \ge 0$, shape h > 0, scale s > 0.

$$egin{aligned} \mathsf{y}_{ijp} &= \mathcal{D}_p {\cdot} f_{ip} {\cdot} \mathsf{CDF}_W(t_{ijp}; h_{ip}, s_{ip}) {+} \epsilon_{ijp} \ \epsilon_{ijp} &\sim \mathcal{N}(0, \sigma_\epsilon^2) \end{aligned}$$

D Dose (p = 1, 2); f fraction of dose delivered. \Rightarrow To estimate: h_{ip}, s_{ip}, f_{ip} (i = 1, ..., N skin portions).

 \Rightarrow Frequentist nonlinear mixed effects model

Model 2: in vivo immediate release

Three-compartment-model with intravenous infusion

$$\begin{split} \frac{da_1(t_{ijp})}{dt} &= k_{21}a_2(t_{ijp}) + k_{31}a_3(t_{ijp}) - \\ & \left[k_{12}a_1(t_{ijp}) + k_{13}a_1(t_{ijp}) + k_ea_1(t_{ijp})\right], \\ \frac{da_2(t_{ijp})}{dt} &= k_{12}a_1(t_{ijp}) - \left[k_{21}a_2(t_{ijp})\right], \\ \frac{da_3(t_{ijp})}{dt} &= k_{13}a_1(t_{ijp}) - \left[k_{31}a_3(t_{ijp})\right], \\ & C_1(t_{ijp}) &= \frac{a_1(t_{ijp})}{V_{1,i}}. \end{split}$$

 $\Rightarrow \text{ To estimate:} \\ V_{1,i}, k_e, k_{12}, k_{21}, k_{13}, k_{31} \\ (i = 1, \dots, N \text{ individuals}).$

\Rightarrow Frequentist nonlinear mixed effects model

Model 3: combining to in vivo controlled release

$$\begin{split} & I_{n}(t_{ijp}) = D_{p} \cdot F_{ip} \cdot B_{i} \cdot \frac{h_{ip}}{s_{ip}} \cdot \left(\frac{t_{ijp}}{s_{ip}}\right)^{h_{ip}-1} \cdot \exp\left\{\left(-\frac{t_{ijp}}{s_{ip}}\right)^{h_{ip}}\right\} \\ & \frac{da_{1}(t_{ijp})}{dt} = I_{n}(t_{ijp}) + k_{21}a_{2}(t_{ijp}) + k_{31}a_{3}(t_{ijp}) - [k_{12}a_{1}(t_{ijp}) + k_{13}a_{1}(t_{ijp}) + k_{e}a_{1}(t_{ijp})] \\ & \frac{da_{2}(t_{ijp})}{dt} = k_{12}a_{1}(t_{ijp})) - [k_{21}a_{2}(t_{ijp}))] \\ & \frac{da_{3}(t_{ijp})}{dt} = k_{13}a_{1}(t_{ijp})) - [k_{31}a_{3}(t_{ijp}))] \\ & C_{1}(t_{ijp}) = \frac{a_{1}(t_{ijp})}{V_{1,i}}. \\ & I_{n}(t_{ijp}): \text{ input function, } a_{c}: \text{ amount of drug in compartment } c. \end{split}$$

At time t = 0: $a_1(0) = a_2(0) = a_3(0) = 0$.

D: Dose; F: fraction of dose delivered; B: fraction of dose delivered which is actually absorbed into the systemic circulation.

\Rightarrow Bayesian hierarchical 2-stage model

⇒ natural integration and transfer of parameter knowledge, incl. corresponding uncertainty, from submodels to CR model.

	mean (SD)					
Parameter	Frequentist		Bayesian			
	fixed	random	fixed	Ŕ	random	Ŕ
	permeation		controlled release			
В	-	-	0.34 (0.09)	1.01	0.26 (0.15)	1.03
f_1	0.83 (0.02)	(0.16)	-	-	-	-
f_2	0.91 (0.05)	(0.07)	-	-	-	-
$log(h_1)$	0.52 (0.02)	(0.15)	0.52 (0.02)	1.00	0.08 (0.02)	1.00
$log(h_2)$	0.61 (0.05)	(0.05)	0.66 (0.03)	1.00		
$\log(s_1)$	3.84 (0.03)	(0.16)	3.34 (0.13)	1.00	0 42 (0 06)	1 00
$\log(s_2)$	3.82 (0.07)	(0.11)	2.72 (0.12)	1.01	0.42 (0.00)	1.00
	immediate	release				
$\log(V)$	10.47 (0.11)	(0.38)	10.50 (0.11)	1.00	0.17 (0.09)	1.00
$\log(k_e)$	0.39 (0.28)	-	-1.00 (0.19)	1.01	-	-
$\log(k_{12})$	0.15 (0.45)	-	0.32 (0.42)	1.00	-	-
$\log(k_{21})$	-2.16 (1.05)	-	-2.12 (0.28)	1.00	-	-
$\log(k_{13})$	1.82 (0.15)	-	2.13 (0.15)	1.00	-	-
$\log(k_{31})$	0.61 (0.20)	-	0.35 (0.17)	1.00	-	-
σ	-	-	0.18 (0.01)	1.00	-	-

Model 1: *in vitro* absorption/permeation

Estimation using nonlinear mixed effects models:

Model 2: in vivo immediate release

Estimation using nonlinear mixed effects models:

Model 3: individual predictions

Model 3: Population predictions

Model 3: Area under the curve (AUC)

Comparing our model (top row) to the model without uncertainty propagation (bottom row).

Elvira Erhardt, Politecnico di Torino

Model 3: Density of the AUC percent prediction errors

Conclusions

- Developed combined *in vitro-in vivo* model provides satisfactory estimation of the transdermal patch's PK population data.
- Innovation consists of shared parameter space merging the two frequentist submodels into a system of ODEs, estimated in Bayesian way.
- Bayesian framework allows natural integration and transfer of knowledge between different sources of information, while accounting for parameter uncertainty.
 - \Rightarrow **Flexible** approach yielding results for broad range of data situations.
 - ⇒ **Extension** of current IVIVC methodology where frequentist one-stage or two-stage approaches are the standard.

Bibliography

Gelman, A., J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin (2013). "Bayesian Data Analysis, Third Edition". *Taylor & Francis*.

Jacobs, T., S. Rossenu, A. Dunne, G. Molenberghs, R. Straetemans, and L. Bijnens

(2008). "Combined Models for Data from In Vitro–In Vivo Correlation Experiments". Journal of Biopharmaceutical Statistics 18.6., pages 1197-1211.

O'Hara, T., S. Hayes, J. Davis, J. Devane, T. Smart, and A. Dunne (2001). "In

Vivo-In Vitro Correlation (IVIVC) Modeling Incorporating a Convolution Step".

Journal of Pharmacokinetics and Pharmacodynamics 28.3, pages 277-298

Davidian, M. and D.M. Giltinan (1995). "Nonlinear Models for Repeated Measurement Data". *Taylor & Francis.*

Pinheiro J., Bates D. (2000). "Mixed-Effects Models in S and S-PLUS." *Statistics and Computing. Springer New York.*

Piotrovskii, V.K. (1987). "The use of Weibull distribution to describe the in vivo absorption kinetics". *J Pharm Biopharm; 15, pages 681-686.*

Rosenbaum, S.E. (2011). "Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations". *Wiley.*

Thank you for your attention!

This project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 633567.

Elvira Erhardt, Politecnico di Torino

Backup II

Backup III

CR data

Backup V

Individual predictions

time [h]

Elvira Erhardt, Politecnico di Torino

Backup VI

Visual predictive check population predictions - 95th

Backup VII

Visual predictive check population predictions - 75th

Gelman-Rubin statistic (\hat{R}) and trace plot

Elvira Erhardt, Politecnico di Torino

Pairs plot

Backup XI

Posterior densities overlaid

