Clinical trials with multiple objectives – optimal rejection regions based on Neyman-Pearson tests

Julia Niewczas¹, Carl-Fredrik Burman², Lisa Hampson³, Martin Posch¹, Franz König¹

¹Medical University of Vienna, ²AstraZeneca, ³Novartis

julia.niewczas@meduniwien.ac.at

IDEAS Dissemination Workshop Wednesday 26 September, 2018

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 633567

http://ideas-itn.eu

General Framework

- Interested in testing two elementary null hypotheses H_i : $\mu_i \leq 0$ (i = 1, 2)
- Associated with two (correlated) bivariate normal Z-statistics

$$Z_1, Z_2 \sim N\left((\mu_1, \mu_2), \left[egin{array}{cc} 1 &
ho \
ho & 1 \end{array}
ight]
ight)$$

- Directly applicable to common testing scenarios, e.g.:
 - Comparison of two treatment arms against a common control with equal sample sizes for all 3 groups gives $\rho = 0.5$, i.e "Dunnett Situation" (ρ will depend on the allocation ratio)
 - When testing the full population and a subgroup (ρ will depend on size of subgroup)
 - Correlated co-primary endpoints (here ρ usually is unknown)
- Type I error inflation when each hypothesis is tested naively at α

Objectives

- How can we test an elementary null hypothesis $H_i: \mu_i \leq 0 \ (i=1,2)$
 - while controlling Familywise Error Rate (FWER) at level α ?
 - and maximising the power?

FWER: probability of incorrectly rejecting at least one null hypothesis

Objectives

- How can we test an elementary null hypothesis $H_i: \mu_i \leq 0 \ (i=1,2)$
 - while controlling Familywise Error Rate (FWER) at level α ?
 - and maximising the power?
- Use closed testing principle and define test for the intersection hypothesis
 - Reject H_i if $Z_i \geq z_{1-\alpha}$ and a test for the intersection H_{12} can be rejected at level α
 - Intersection point null $H_{12}:(\mu_1,\mu_2)=(0,0)$
 - Maximising power at $(\mu_1, \mu_2) = (\theta_1', \theta_2')$
 - Controlling Type I Error Rate under the point null at level α

FWER: probability of incorrectly rejecting at least one null hypothesis

Objectives

- How can we test an elementary null hypothesis $H_i: \mu_i \leq 0 \ (i=1,2)$
 - while controlling Familywise Error Rate (FWER) at level α ?
 - and maximising the power?
- Use closed testing principle and define test for the intersection hypothesis
 - Reject H_i if $Z_i \geq z_{1-\alpha}$ and a test for the intersection H_{12} can be rejected at level α
 - Intersection point null $H_{12}:(\mu_1,\mu_2)=(0,0)$
 - Maximising power at $(\mu_1, \mu_2) = (\theta_1', \theta_2')$
 - Controlling Type I Error Rate under the point null at level α
- Apply Neyman-Pearson Lemma

FWER: probability of incorrectly rejecting at least one null hypothesis

Optimising The Intersection Hypothesis H_{12} Test

 According to Neyman-Pearson Lemma the most powerful test for testing H_{12} against point alternative has the rejection region in a Z_1 and Z_2 plane

$$R = \{(Z_1, Z_2) | w_1 Z_1 + w_2 Z_2 \ge c\},\$$

where
$$w_1=rac{ heta_1'-
ho heta_2'}{(1-
ho^2)}$$
, $w_2=rac{ heta_2'-
ho heta_1'}{(1-
ho^2)}$, and

$$c = \Phi^{-1}(1-\alpha)\sqrt{w_1^2 + w_2^2 + 2w_1w_2\rho}$$

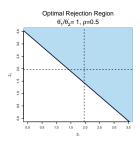
• For a proof see BITTMAN ET AL (2009)

The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

- ρ < 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$

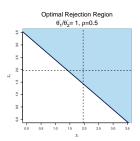
The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

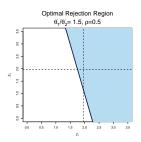
- ρ < 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$



The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

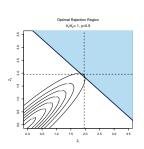
- ρ ≤ 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$



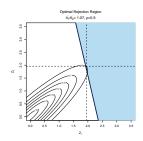


The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

- ρ < 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$

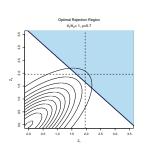


 $\rho = 0.9$:

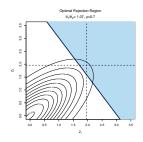


The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

- ρ < 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$

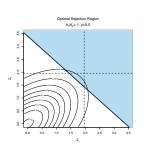


 $\rho = 0.7$:

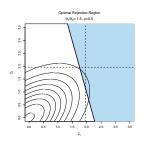


The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

- ρ < 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$

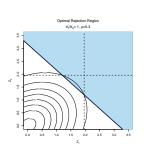


 $\rho = 0.5$:

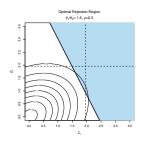


The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

- ρ < 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$

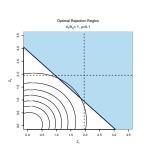


 $\rho = 0.3$:

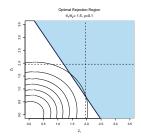


The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

- ρ < 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$

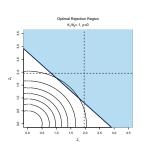


 $\rho = 0.1$:

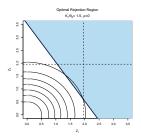


The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

- ρ < 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$

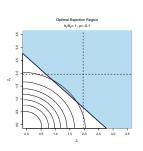


 $\rho = 0$:

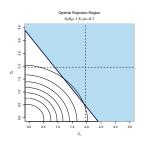


The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

- ρ < 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$

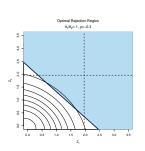


 $\rho = -0.1$:

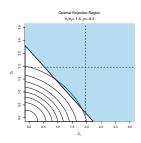


The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

- ρ < 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$

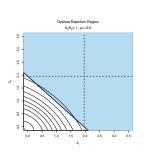


 $\rho = -0.3$:

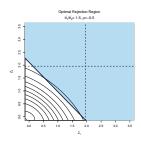


The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

- ρ ≤ 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$

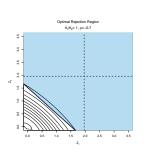


 $\rho = -0.5$:

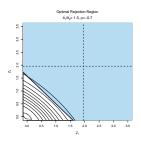


The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

- ρ < 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$

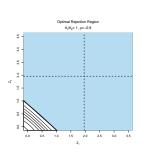


$$\rho = -0.7$$
:

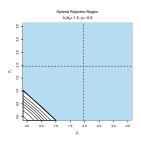


The rejection region boundary $w_1Z_1 + w_2Z_2 = c$ has a negative slope if

- ρ < 0
- $\rho > 0$ and $\theta_1'/\theta_2' > \rho$
- $\rho > 0$ and $\theta_1'/\theta_2' < 1/\rho$



$$\rho = -0.9$$
:

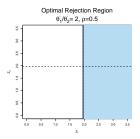


The rejection region boundary

- Is a vertical line if $\theta'_1/\theta'_2 = 1/\rho$ for $\rho \ge 0$
 - Optimal test depends on Z_1 only

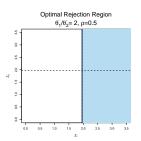
The rejection region boundary

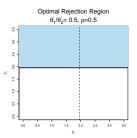
- Is a vertical line if $\theta_1'/\theta_2' = 1/\rho$ for $\rho \ge 0$
 - Optimal test depends on Z_1 only



The rejection region boundary

- Is a vertical line if $\theta_1'/\theta_2' = 1/\rho$ for $\rho \ge 0$
 - Optimal test depends on Z_1 only
- Is a horizontal line if $\theta_1'/\theta_2' = \rho$ for $\rho \ge 0$
 - Optimal test depends on \mathbb{Z}_2 only

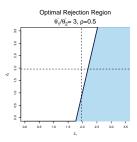




The rejection region boundary has a positive slope if

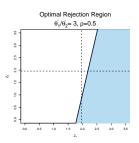
The rejection region boundary has a positive slope if

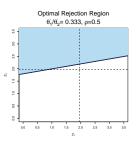
• $\theta_1'/\theta_2' > 1/\rho$ for $\rho > 0$



The rejection region boundary has a positive slope if

- $\theta_1'/\theta_2' > 1/\rho$ for $\rho > 0$
- $\theta_1'/\theta_2' < \rho$ for $\rho > 0$





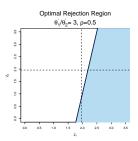
The rejection region boundary has a positive slope if

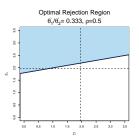
- $\theta_1'/\theta_2' > 1/\rho \text{ for } \rho > 0$
- $\theta_1'/\theta_2' < \rho$ for $\rho > 0$

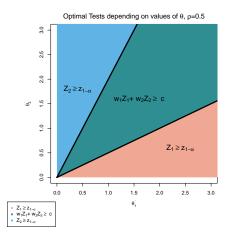
Under these configurations Type I Error of point null hypothesis H_{12} is controlled, but NOT of the composite null hypothesis

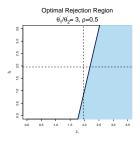
$$H_{12} = \{(\mu_1, \mu_2) | \mu_1 \le 0 \land \mu_2 \le 0\}$$

• E.g. Type I Error when $(\mu_1 = 0, \mu_2 \rightarrow -\infty) = 1!$

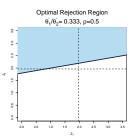


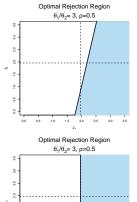


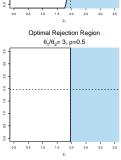




Rejection Region for The Point Null H_{12}

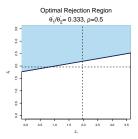


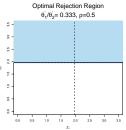




Rejection Region for The Point Null H_{12}

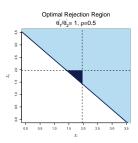
Rejection Region for The Composite Null H_{12}

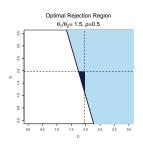




Testing Elementary Hypotheses

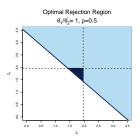
NON-CONSONANT TESTS

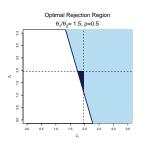




Consonant Rejection Regions

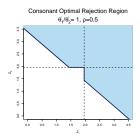
- If the rejection region boundary has a negative slope the test is non-consonant
 - For some outcomes the intersection hypothesis is rejected but none of the elementary hypotheses H_i (i = 1, 2) can be rejected

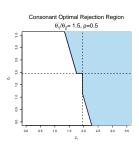




Consonant Rejection Regions

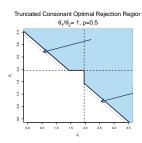
- If the rejection region boundary has a negative slope the test is non-consonant
 - For some outcomes the intersection hypothesis is rejected but none of the elementary hypotheses H_i (i = 1, 2) can be rejected
- Rejection regions and solutions for $\theta'_1 = \theta'_2$ already discussed in the literature (see e.g. BITTMAN ET AL (2009), SU ET AL (2012))
 - Exclusion of the region where H_1 and H_2 cannot be rejected

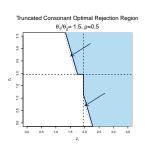




Consonant Rejection Regions

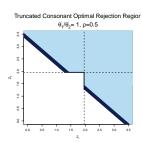
- If the rejection region boundary has a negative slope the test is non-consonant
 - For some outcomes the intersection hypothesis is rejected but none of the elementary hypotheses H_i (i = 1, 2) can be rejected
- Rejection regions and solutions for $\theta'_1 = \theta'_2$ already discussed in the literature (see e.g. BITTMAN ET AL (2009), SU ET AL (2012))
 - Exclusion of the region where H_1 and H_2 cannot be rejected
 - Shift of the rejection line

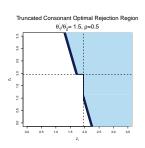




Consonant Rejection Regions

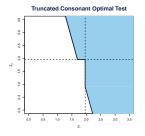
- If the rejection region boundary has a negative slope the test is non-consonant
 - For some outcomes the intersection hypothesis is rejected but none of the elementary hypotheses H_i (i = 1, 2) can be rejected
- Rejection regions and solutions for $\theta'_1 = \theta'_2$ already discussed in the literature (see e.g. BITTMAN ET AL (2009), SU ET AL (2012))
 - Exclusion of the region where H_1 and H_2 cannot be rejected
 - Shift of the rejection line

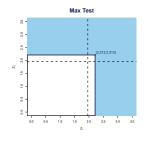


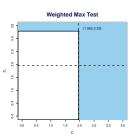


Power Considerations Within Closed Testing:

$$\rho = 0.5, \, \theta_1' = 3, \, \theta_2' = 2$$



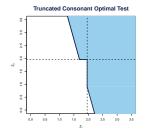


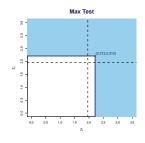


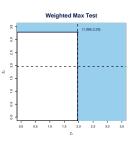
True Effect		Disjunctive Power	
$\mu_1 = 3.0, \ \mu_2 = 2.0$	0.86151	0.81915	0.85117

Power Considerations Within Closed Testing:

$$\rho = 0.5, \, \theta_1' = 3, \, \theta_2' = 2$$

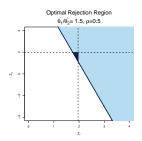




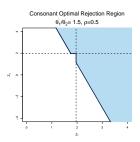


True Effect		Disjunctive Power	
$\mu_1 = 3.0, \ \mu_2 = 2.0$	0.86151	0.81915	0.85117
$\mu_1 = 1.5, \ \mu_2 = 3.0$	0.51703	0.79752	0.50952

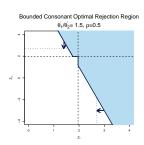
- Alternative approaches
 - \bullet Instead of shifting the line, bound the region with horizontal and vertical lines while fully exhausting α



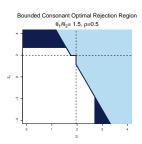
- Alternative approaches
 - Instead of shifting the line, bound the region with horizontal and vertical lines while fully exhausting α



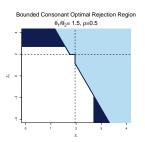
- Alternative approaches
 - \bullet Instead of shifting the line, bound the region with horizontal and vertical lines while fully exhausting α

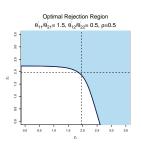


- Alternative approaches
 - Instead of shifting the line, bound the region with horizontal and vertical lines while fully exhausting α

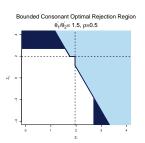


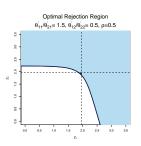
- Alternative approaches
 - Instead of shifting the line, bound the region with horizontal and vertical lines while fully exhausting α
 - Use a two-point alternative, each with assigned probability



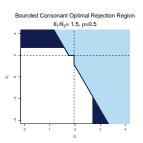


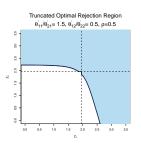
- Alternative approaches
 - Instead of shifting the line, bound the region with horizontal and vertical lines while fully exhausting α
 - Use a two-point alternative, each with assigned probability



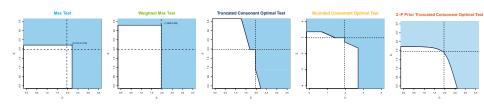


- Alternative approaches
 - Instead of shifting the line, bound the region with horizontal and vertical lines while fully exhausting α
 - Use a two-point alternative, each with assigned probability



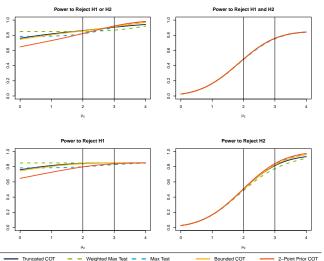


- Alternative approaches
 - Instead of shifting the line, bound the region with horizontal and vertical lines while fully exhausting α
 - Use a two-point alternative, each with assigned probability
- In the following we compare all 5 approaches:



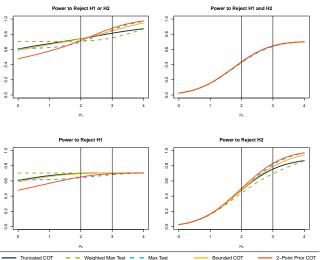
Design parameters: $\theta'_1 = 3.0$, $\theta'_2 = 2.0$, $(\theta''_1 = 1.5, \theta''_2 = 3.0)$

True values: $\mu_1 = 3.0$, μ_2 : shown on x-axis



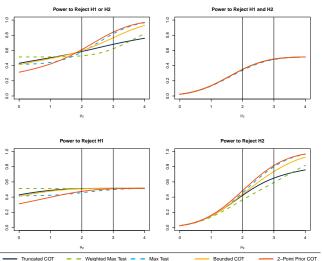
Design parameters: $\theta'_1 = 3.0$, $\theta'_2 = 2.0$, $(\theta''_1 = 1.5, \theta''_2 = 3.0)$

True values: $\mu_1 = 2.5$, μ_2 : shown on x-axis



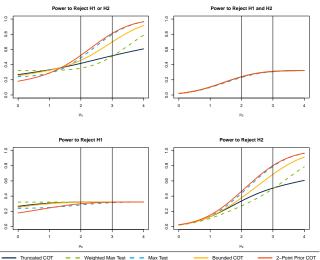
Design parameters: $\theta'_1 = 3.0$, $\theta'_2 = 2.0$, $(\theta''_1 = 1.5, \theta''_2 = 3.0)$

True values: $\mu_1 = 2.0$, μ_2 : shown on x-axis



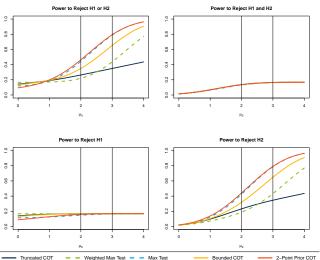
Design parameters: $\theta'_1 = 3.0$, $\theta'_2 = 2.0$, $(\theta''_1 = 1.5, \theta''_2 = 3.0)$

True values: $\mu_1 = 1.5$, μ_2 : shown on x-axis



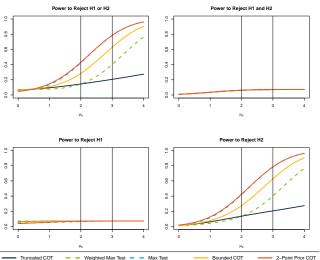
Design parameters: $\theta'_1 = 3.0$, $\theta'_2 = 2.0$, $(\theta''_1 = 1.5, \theta''_2 = 3.0)$

True values: $\mu_1 = 1.0$, μ_2 : shown on x-axis



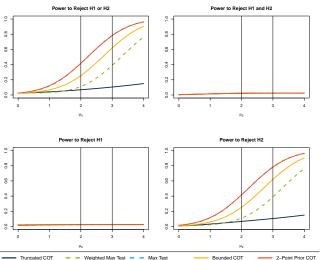
Design parameters: $\theta'_1 = 3.0$, $\theta'_2 = 2.0$, $(\theta''_1 = 1.5, \theta''_2 = 3.0)$

True values: $\mu_1 = 0.5$, μ_2 : shown on x-axis



Design parameters: $\theta'_1 = 3.0$, $\theta'_2 = 2.0$, $(\theta''_1 = 1.5, \theta''_2 = 3.0)$

True values: $\mu_1 = 0.0$, μ_2 : shown on x-axis



Remarks on correlation

- (Consonant) Optimal test directly applicable if ρ is known. This is the case if correlation is induced by design (e.g., for many-one comparisons or subgroup testing)
- More problematic if ρ is unknown, e.g., for different endpoints.
 - good knowledge and/or conservative assumption on ρ
 - plug-in observed correlation
 - plug-in boundary of an confidence interval for observed correlation (Berger and Boos, 1994)

Conclusions

- We found optimal test for intersection hypothesis H_{12} with a composite null
- In a Dunnett Situation the Consonant Optimal Test achieves higher power that the (Weighted) Max Test under the target effects
- However, there might be a power loss if the true effect size differs from the pre-specified alternative
- More robust approaches such as Bounded Consonant Optimal Test or use of two-point alternatives can improve the power results
- Use of utility functions (e.g. more weight on one hypothesis, number of rejected hypotheses ...) can be another approach for finding optimal rejection regions (not discussed here)

References

Bittman, R., Romano, J., Vallarino, C., and Wolf, M. (2009).

Optimal testing of multiple hypotheses with common effect direction. Biometrika, 96(2):399-410.

Bregenzer, T. and Lehmacher, W. (1998).

Directional tests for the analysis of clinical trials with multiple endpoints allowing for incomplete data. Biometrical Journal, 40:911-928.

Lehmacher, W. and Wassmer, G. (1995)

Multivariate tests for multiple endpoints in clinical trials.

Statistics in Medicine, 14:1163-1175.

Lehmacher, W., Wassmer, G., and Reitmeir, P. (1991).

Procedures for two-sample comparisons with multiple endpoints controlling the experimentwise error rate. Biometrics, 47:511-521.

Lehmann, E. L. and Romano, J. P. (2006).

Testing statistical hypotheses.

Springer Science & Business Media.

Niewczas, J., Burman, C., Hampson, L., Posch, M., and Koenig, F. (2018).

Clinical trials with multiple objectives - optimal rejection regions based on neyman-pearson tests.

Romano, J., Shaikh, A., and Wolf, M. (2011).

Consonance and the closure method in multiple testing. The Iternational Journal of Biostatistics, 7(1):1-25.

Su, T., Glimm, E., Whitehead, J., and Branson, M. (2012).

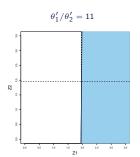
An evaluation of methods for testing hypotheses relating to two endpoints in a single clinical trial. Statistics in Medicine, 11:107-117.

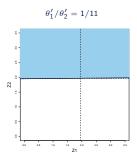
Are there any questions?

BACK-UP

- $\theta_1'/\theta_2' > 1/\rho$ for $\rho > 0$
- $\theta_1'/\theta_2' < \rho$ for $\rho > 0$

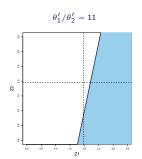
$$\rho = 0.1$$
:

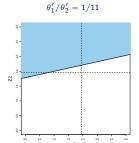




- $\theta_1'/\theta_2' > 1/\rho$ for $\rho > 0$
- $\theta_1'/\theta_2' < \rho$ for $\rho > 0$

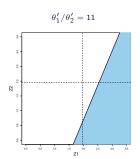
$$\rho = 0.3$$
:

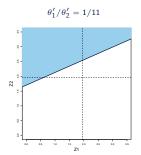




- $\theta_1'/\theta_2' > 1/\rho$ for $\rho > 0$
- $\theta_1'/\theta_2' < \rho$ for $\rho > 0$

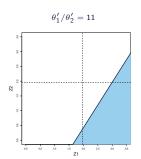
$$\rho = 0.5$$
:

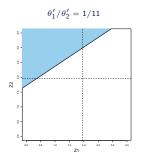




- $\theta_1'/\theta_2' > 1/\rho$ for $\rho > 0$
- $\theta_1'/\theta_2' < \rho$ for $\rho > 0$

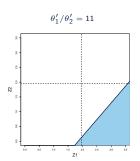
$$\rho = 0.7$$
:

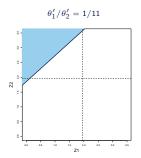




- $\theta_1'/\theta_2' > 1/\rho$ for $\rho > 0$
- $\theta_1'/\theta_2' < \rho$ for $\rho > 0$

$$\rho = 0.9$$
:



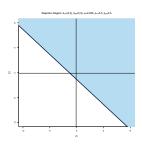


Two-point alternative

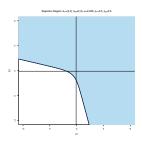
Two sets of alternatives considered such that:

•
$$ALR = \frac{f_{H'}(Z_1, Z_2)}{f_H(Z_1, Z_2)} = \frac{\sum_{i=1}^2 p_i f_{H'_i}(Z_1, Z_2)}{f_H(Z_1, Z_2)}$$

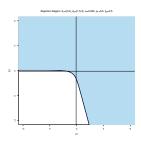
- Rejection region cannot be found analytically. Numerical approximation instead
- \bullet Rejection regions change depending on $\theta'_{1i}/\theta'_{2i}$



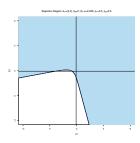
- Rejection regions change depending on $\theta'_{1i}/\theta'_{2i}$
 - If none of the alternatives has $\theta_1'/\theta_2'>1/
 ho$, then the shape does not cross the lines $Z_{1-\alpha}$



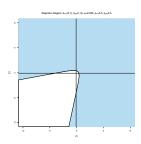
- Rejection regions change depending on $\theta'_{1i}/\theta'_{2i}$
 - If none of the alternatives has $\theta_1'/\theta_2'>1/
 ho$, then the shape does not cross the lines $Z_{1-\alpha}$



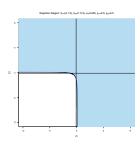
- Rejection regions change depending on $\theta'_{1i}/\theta'_{2i}$
 - If none of the alternatives has $\theta_1'/\theta_2'>1/
 ho$, then the shape does not cross the lines $Z_{1-\alpha}$



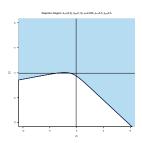
- Rejection regions change depending on $\theta'_{1i}/\theta'_{2i}$
 - ullet If none of the alternatives has $heta_1'/ heta_2'>1/
 ho$, then the shape does not cross the lines $Z_{1-\alpha}$
 - If one of the alternatives has $\theta_1'/\theta_2' > 1/\rho$, then the rejection region boundary crosses $Z_{1-\alpha}$



- Rejection regions change depending on $\theta'_{1i}/\theta'_{2i}$
 - If none of the alternatives has $\theta_1'/\theta_2' > 1/\rho$, then the shape does not cross the lines $Z_{1-\alpha}$
 - If one of the alternatives has $\theta_1'/\theta_2' > 1/\rho$, then the rejection region boundary crosses $Z_{1-\alpha}$
 - If the alternatives have $\theta_1'/\theta_2' > 1/\rho$ and $\theta_2'/\theta_1' > 1/\rho$, then the rejection region boundary crosses the lines $Z_i = Z_{1-\alpha}$



- Rejection regions change depending on $\theta'_{1i}/\theta'_{2i}$
 - If none of the alternatives has $\theta_1'/\theta_2' > 1/\rho$, then the shape does not cross the lines $Z_{1-\alpha}$
 - If one of the alternatives has $\theta_1'/\theta_2' > 1/\rho$, then the rejection region boundary crosses $Z_{1-\alpha}$
 - If the alternatives have $\theta_1'/\theta_2' > 1/\rho$ and $\theta_2'/\theta_1' > 1/\rho$, then the rejection region boundary crosses the lines $Z_i = Z_{1-\alpha}$



- Rejection regions change depending on $\theta'_{1i}/\theta'_{2i}$
 - If none of the alternatives has $\theta_1'/\theta_2' > 1/\rho$, then the shape does not cross the lines $Z_{1-\alpha}$
 - If one of the alternatives has $\theta_1'/\theta_2' > 1/\rho$, then the rejection region boundary crosses $Z_{1-\alpha}$
 - If the alternatives have $\theta_1'/\theta_2' > 1/\rho$ and $\theta_2'/\theta_1' > 1/\rho$, then the rejection region boundary crosses the lines $Z_i = Z_{1-\alpha}$

Two- and N-Point Priors

- Conjecture that rejection boundary of optimal test is concave for any prior
- For consonant test, truncation has to be performed
- For smaller values of z-statistics, the rejection region would be bounded by $z_{1-\alpha}$.

Two- and N-Point Priors

- Conjecture that rejection boundary of optimal test is concave for any prior
- For consonant test, truncation has to be performed
- For smaller values of z-statistics, the rejection region would be bounded by $z_{1-\alpha}$.

