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Dose Finding Studies
The most important questions...

I Is there any statistical evidence of drug activity?
I If yes, what are doses significantly different from control?
I What is the dose-response relationship?
I What is the target dose?
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1MCP-Mod: Multiple Comparison Procedure-Modelling Techniques by Bretz et al. (2005)
2MCLRa: Multiple Comparison Likelihood Ratio Asymptotic Method by Dette et al. (2015)
3MCLRe: Multiple Comparison Likelihood Ratio Exact Method by Gutjahr and Bornkamp (2017)
4MHMC: Multiple Hierarchical Modeling and Comparison Method by Baayen et al. (2015)



Dose Finding Studies
Why do we need a new approach?

Motivation
I Target dose selected in Phase II fails to perform well in Phase III

clinical trials.
I Existing dose-finding methods estimate accurately the dose

response shapes at the cost of losing in bias and precision of the
target dose (MED) estimation.

I Construction of confidence intervals for dose finding studies have
not been broadly investigated in literature.

Objective
I Design a method so that we can get more accurate estimate of

MED and more precise and narrow confidence interval for MED.

MED = argmin
d∈(d0,dk ]

{µd ≥ µd0 + ∆}



Dose Estimation And Inference
A Weighted Regression Approach:

I In the non-linear regression set up:

Yij = µ(di , θ) + εij = α + βf (di , γ) + εij (1)

We try to Minimize∑
i,j

wi,j (di ,MED(α, β, γ))(Yij − α− βf (di , γ))2

instead of minimizing the

SSE =
∑

i,j

(Yij − α− βf (di , γ))2

where MED(α, β, γ) = h0(f (d0, γ) + ∆
β

) and h0 is the inverse of f with
respect to dose d .



Dose Estimation
Weights Function:

Figure: Different weight functions plotted when
the underlying true dose response model is the
following emax model: 0.2 + 0.7 d

d+0.2 .

Table: Table showing the formula of the weights
function used in our method

Weights Formula z(d,dMED)

w1 (1− z2) min{ dMED−d
dMED

,0.999}

w2 (1− z2)2 min{ dMED−d
dMED

,0.999}

w3 (1− z2) min{ dMED−d
h1

,0.999}

w4 (1− z2)2 min{ dMED−d
h1

,0.999}

w5 (1− z2) min{ dMED−d
h2

,0.999}

w6 (1− z2)2 min{ dMED−d
h2

,0.999}
1 dMED is the MED estimate
2 h1 = min |d − dMED |

d∈{d1,...,dk}3 h2 = min |d − dMED |
d∈{d(2),...,d(k)}

, where d(1), . . . , d(k) are so arranged such that

d(1) is closest dose in {d1, . . . , dk} to dMED and d(k) is furthest away from

dMED and



Dose Estimation
Applying the weighted regression approach:

1. Apply iterated weighted non linear least squares (IRWNLS)

2. Robust Regression (RR)( Fraiman (1983)):
I Solve for θn using the following:∑

i,j

φ(Yij , di , θ) =
∑

i,j

wi (di , θ) · (Yij − µ(di , θ))
∂µ(di , θ)

∂θ
= 0

where θ = (α, β, γ) and wi (di , θ) are the weights function shown in
the earlier slide.

I Distribution of the MED weighted parameters;

√
n(θn − θ0)

D−→N (0,W−1VW−1t
)

where V = EF [φ(Y ,X , θ0)φ(Y ,X , θ0)t ], W = EF ( ∂φ(Y ,X ,θ0)
∂θ

]
I Obtain the estimates θ̂F and compute:

M̂ED = h0(f (d0, γ̂F ) +
∆

β̂F
)

I Apply delta method to get the asymptotic distribution of M̂ED.
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Dose Estimation
Simulations:

Simulation set up:
Design:

I Dose groups: 0, 0.05, 0.2, 0.6, 1
I Standard Deviation: 0.65
I Sample Size: 25
I 5000 simulation runs for each model
I Evaluate the estimate by: Relative Deviation MED

Ri =
M̂EDi −MED

MED
Table: Data generating dose-response shapes

Model Simulated from Fitted on
Emax 0.2 + 0.7 d

0.2+d emax
Sigmoidal 0.2 + 0.615 d4

0.44+d4 sigeMax



Dose Estimation
Simulation Results:

Figure: Distribution of MED obtained from the weighted regression (RR)
approach for data simulated from Emax model
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Figure: Distribution of MED obtained from the weighted regression (RR)
approach for data simulated from sigEmax model



Dose Inference
Confidence interval estimation

I Compare the confidence interval estimates of MED with existing
approaches.

I Three approaches considered for benchmarking:
I Asymptotic confidence interval from unweighted non-linear

regression (Classical Approach)
I Profile likelihood approach by Baayen and Hougaard (2015)

(PL Approach)
I Percentile bootstrap approach by Baayen and Hougaard (2015)

(PB Approach)
I Evaluate the performance of the different methods by benchmarking

their coverage probability.



Dose Inference
Confidence interval estimation: Simulations

Following Baayen and Hougaard (2015) we considered the following
simulation set up:
Design 1:

I Dose groups: 0, 0.05, 0.2, 0.6, 1
I Standard Deviation: 0.65
I Sample Size: 25, 50, 75, 100
I 2000 simulation runs for each model
I Evaluate the coverage of the 95% confidence interval of MED

Table: Data generating dose-response shapes

Model Simulated from Fitted on
Emax 0.32 + 0.74 d

0.14+d emax
Sigmoidal 0.32 + 0.66 d4

0.34+d4 sigeMax



Dose Inference
Confidence interval estimation: Simulation Results

(a) Table showing the coverage of 95% confidence
interval under the different methods for data simulated
from the emax model:

Sample Size Methods

Classical RR PB PL

25 0.838 0.860 0.936 0.942
50 0.904 0.926 0.956 0.949
75 0.925 0.934 0.946 0.949

100 0.940 0.942 0.954 0.951

(b) Table showing the coverage of 95% confidence
interval under the different methods for data simulated
from the sigEmax model:

Sample Size Methods

Classical RR PB PL

25 0.964 0.927 0.950 0.913
50 0.987 0.969 0.957 0.899
75 0.990 0.981 0.956 0.905
100 0.996 0.984 0.957 0.912

I The PL and PB approach performs superior to the other methods for the
emax model.

I The Weighted RR approach performs better than the classical approach
for all the sample sizes and attain the nominal value for large sample
sizes. But it shows under coverage for small sample sizes like nij = 25.

I For the sigEmax model, the PB approach is attaining the nominal level
but the classical and RR approach perform erratically for large sample
sizes.

I PL approach fails to attain the nominal level for the sigEmax model.
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Dose Inference
Confidence interval estimation: Simulations

Design 2:
I Dose groups: 0, 0.2, 0.4, 0.6, 1
I Other characteristics same Design 1

Table: Table showing the coverage of 95% confidence interval under the
different methods for data simulated from the sigEmax model in Design 2:

Sample Size Methods

Classical RR PB PL

25 0.9495 0.9400 0.9370 0.9097
50 0.9575 0.9410 0.9625 0.9410
75 0.9545 0.9440 0.9560 0.9317

100 0.9525 0.9495 0.9565 0.9276



Conclusions:
I The PB approach performs superior to the other approaches for all the

scenarios. It is not sensitive to the dose-allocation design.
I The RR approach performs well for large sample sizes across all the

scenarios.
I PB and PL being grid based approaches, are not only computationally

intensive but also the results depend a lot on the choice of grids.
I RR approach is comparatively less time consuming and

methodologically more sound.
I RR approach performs well under model mis-specification.
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Outlook

I RR approach is preferred over IRNLS approach because
I It gives better estimation and inference around the target dose.
I it proposes a nice way to integrate the robust regression with model

based estimation.
I The RR approach is sensitive to dose allocation, hence the

optimal design characteristic can also be explored in future.
I Extension of the approaches to a multiple testing framework.
I Extend the weighted regression approach such that it can

accurately estimate all the target doses of interest in a clinical
trial.
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