An ethical non-parametric design for selecting arms in a multi-arm clinical trial

Thomas Jaki, Pavel Mozgunov

Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics and Statistics, Lancaster University, UK t.jaki@lancaster.ac.uk

Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 633567.

Consider a trial with **two arms** and **binary outcomes** which aims to find the **superior arm**.

Consider a trial with **two arms** and **binary outcomes** which aims to find the **superior arm**.

An example

- 10 outcomes observed for each arm
- 4 successes on 1st arm
- 6 successes on 2st arm

Consider a trial with **two arms** and **binary outcomes** which aims to find the **superior arm**.

An example

- 10 outcomes observed for each arm
- 4 successes on 1st arm
- 6 successes on 2st arm

Q: To which arm a next patient should be assigned?

Consider a trial with **two arms** and **binary outcomes** which aims to find the **superior arm**.

An example

- 10 outcomes observed for each arm
- 4 successes on 1st arm
- 6 successes on 2st arm

Q: To which arm a next patient should be assigned?

We would like to

- make a reliable recommendation (high statistical power)
- maximize the proportion of the population on the superior arm

"Earn vs Learn" trade-off

Option 1. Earn

Assign a next patients to 2nd arm

Option 1. Earn

Assign a next patients to 2nd arm

Challenges:

- Selection can lock in the suboptimal arm
- Low statistical power

Option 1. Earn

Assign a next patients to 2nd arm

Challenges:

- Selection can lock in the suboptimal arm
- Low statistical power

Option 2. Learn

Assign next patient to arm we know least about (e.g. the Shannon information)

Option 1. Earn

Assign a next patients to 2nd arm

Challenges:

- Selection can lock in the suboptimal arm
- Low statistical power

Option 2. Learn

Assign next patient to arm we know least about (e.g. the Shannon information)

Challenges:

• Unethical (low number of treated patients)

Current approaches

- Fixed randomization
- Randomized play the winner
- Current belief (maximum point estimate)
- Optimal multi-arm bandit (MAB) and the dynamic programming

Back to information measures

The Shannon information (entropy)

$$h(f) = -\int_{\mathbb{R}} f(z) \log f(z) dz.$$

Back to information measures

The Shannon information (entropy)

$$h(f) = -\int_{\mathbb{R}} f(z) \log f(z) dz.$$

In the example above,

$$h(\operatorname{arm} 1) = h(\operatorname{arm} 2).$$

This information does not reflect our specific interest in the superior arm

It shows the amount of information needed to answer the question What is the success probability?

Weighted information

Consider a two-fold experiment:

(i) what is the probability of success

(ii) is the probability of success close to a target, γ

Weighted information

Consider a two-fold experiment:

(i) what is the probability of success

(ii) is the probability of success close to a target, γ

A: The weighted Shannon information

$$h_{\phi}(f) = -\int_{\mathbb{R}} \frac{\phi(z)f(z)\mathrm{log}f(z)\mathrm{d}z}{\mathrm{d}z}.$$

Weight Function

The Beta-form weight function

$$\phi_n(p) = \Lambda(\gamma, x, n) p^{\gamma \sqrt{n}} (1-p)^{(1-\gamma)\sqrt{n}}.$$
(1)

Methods

- Model probability of success with a Beta distribution
- $\bullet \ \alpha$ is the true probability of success
- γ is the target probability (for instance, $\gamma = 0.999$)

Theorem

Let $h(f_n)$ and $h^{\phi_n}(f_n)$ be the standard and weighted differential entropies. Then,

$$\lim_{n\to\infty}\left(\left[h^{\phi_n}(f_n)-h(f_n)\right]-\frac{1}{2}\left(\frac{(\alpha-\gamma)^2}{\alpha(1-\alpha)}\right)n^{2\kappa-1}+\omega\right)=0$$

Methods

- Model probability of success with a Beta distribution
- $\bullet \ \alpha$ is the true probability of success
- γ is the target probability (for instance, $\gamma=0.999$)

Theorem

Let $h(f_n)$ and $h^{\phi_n}(f_n)$ be the standard and weighted differential entropies. Then,

$$\lim_{n\to\infty}\left(\left[h^{\phi_n}(f_n)-h(f_n)\right]-\frac{1}{2}\left(\frac{(\alpha-\gamma)^2}{\alpha(1-\alpha)}\right)n^{2\kappa-1}+\omega\right)=0$$

Design

$$\hat{\delta}_{n_j}^{(\kappa)} = rac{(\hat{p}_{n_j}-\gamma)^2}{\hat{p}_{n_j}(1-\hat{p}_{n_j})}n_j^{2\kappa-1}$$

Arm selection algorithm:

- Start from $\hat{\delta}_{\beta_i}^{(\kappa)}$, $i = 1, \dots, m$
- **2** Observed n_i and x_i outcomes for the arm A_i , i = 1, ..., m
- Arm A_j is selected if it satisfies

$$\hat{\delta}_{n_j}^{(\kappa)} = \inf_{i=1,\dots,m} \hat{\delta}_{n_i}^{(\kappa)}.$$

Seperat 2-3 until the total number of patients is reached.

Note: Randomize in case of tie.

Illustration. Two arms trial

Consider the trial with m = 2 arms ($\alpha_1 = 0.5$ and $\alpha_2 = 0.7$), n = 75 patients

Prior :
$$\hat{p} = (0.99, 0.99); \quad \beta = (2, 2)$$

Alternative: Constrained rand. dynamic programming (Williamson et.al, 2016)

Illustration. Two arms trial

Consider the trial with m=2 arms ($lpha_1=0.5$ and $lpha_2=0.7$), n=75 patients

Prior :
$$\hat{p} = (0.99, 0.99); \quad \beta = (2, 2)$$

Alternative: Constrained rand. dynamic programming (Williamson et.al, 2016)

Numerical study

We consider two trials with m = 4 treatments (Villar et.al, 2015) Trial 1: $N_1 = 423$, $p = [0.3, 0.3, 0.3, 0.5]^T$ Trial 2: $N_2 = 80$, $p = [0.3, 0.4, 0.5, 0.6]^T$.

Hypothesis $H_0: p_0 \ge p_i$ for i = 1, 2, 3

with the family-wise error rate calculated at $p_0 = \ldots = p_3 = 0.3$

Prior :
$$\hat{p} = (0.99, 0.99, 0.99, 0.99); \quad \beta = (5, 2, 2, 2)$$

We study:

- the type-I error rate (α)
- statistical power (1η)
- expected number of successes (ENS)

Comparators:

- MAB approach based on the Gittins index
- Fixed randomization

Mathad	$H_0: p_0 = p_1 = p_2 = p_3 = 0.3$			$H_1: p_0 = p_1 = p_2 = 0.3, p_3 = 0.5$			
Method	α	$p^*(s.e)$	ENS(s.e.)	$(1 - \eta)$	p*(s.e.)	ENS (s.e.)	
MAB	0.05	0.25 (0.18)	126.7 (9.4)	0.43	0.83 (0.10)	198.3 (13.7)	
WE ($\kappa = 0.55$)	0.05	0.22 (0.20)	126.9 (9.4)	0.55	0.83 (0.18)	197.1 (17.8)	

Method	H_0 :	$p_0 = p_1 = p_2 =$	$p_3 = 0.3$	$H_1: p_0 = p_1 = p_2 = 0.3$			$3, p_3 = 0.5$
Wiethou	α	$p^*(s.e)$	ENS(s.e.)		$(1 - \eta)$	p*(s.e.)	ENS (s.e.)
MAB	0.05	0.25 (0.18)	126.7 (9.4)		0.43	0.83 (0.10)	198.3 (13.7)
WE ($\kappa = 0.55$)	0.05	0.22 (0.20)	126.9 (9.4)		0.55	0.83 (0.18)	197.1 (17.8)
FR	0.05	0.25 (0.02)	126.9 (9.4)		0.82	0.25 (0.02)	147.9 (9.6)
WE ($\kappa = 0.65$)	0.05	0.23 (0.13)	126.9 (9.4)		0.87	0.74 (0.10)	189.3 (13.7)

Trial 1

Method	H_0 :	$p_0 = p_1 = p_2 =$	$p_3 = 0.3$	$H_1: p_0 = p_1 = p_2 = 0.3, p_3 = 0.5$			
Wiethou	α	$p^*(s.e)$	ENS(s.e.)	$(1 - \eta)$	p*(s.e.)	ENS (s.e.)	
MAB	0.05	0.25 (0.18)	126.7 (9.4)	0.43	0.83 (0.10)	198.3 (13.7)	
WE ($\kappa = 0.55$)	0.05	0.22 (0.20)	126.9 (9.4)	0.55	0.83 (0.18)	197.1 (17.8)	
FR	0.05	0.25 (0.02)	126.9 (9.4)	0.82	0.25 (0.02)	147.9 (9.6)	
WE ($\kappa = 0.65$)	0.05	0.23 (0.13)	126.9 (9.4)	0.87	0.74 (0.10)	189.3 (13.7)	

Mathad	H_0 :	$p_0 = p_1 = p_2 =$	$= p_3 = 0.3$	$H_1: p_0 = 0.3, p_1 = 0.4, p_2 = 0.5, p_3 = 0.6$				
Wethou	α	$p^*(s.e)$	ENS(s.e.)	$(1 - \eta)$	p*(s.e.)	ENS (s.e.)		
MAB	0.00	0.25 (0.13)	24.0 (4.10)	0.00	0.49 (0.21)	41.6 (5.4)		
WE ($\kappa = 0.55$)	0.01	0.20 (0.15)	24.0 (4.10)	0.11	0.50 (0.27)	40.7 (5.9)		

Trial 1

Method	H_0 :	$p_0 = p_1 = p_2 =$	$p_3 = 0.3$	$H_1: p_0 = p_1 = p_2 = 0.3, p_3 = 0.5$			
Wiethou	α	$p^*(s.e)$	ENS(s.e.)	$(1 - \eta)$	p*(s.e.)	ENS (s.e.)	
MAB	0.05	0.25 (0.18)	126.7 (9.4)	0.43	0.83 (0.10)	198.3 (13.7)	
WE ($\kappa = 0.55$)	0.05	0.22 (0.20)	126.9 (9.4)	0.55	0.83 (0.18)	197.1 (17.8)	
FR	0.05	0.25 (0.02)	126.9 (9.4)	0.82	0.25 (0.02)	147.9 (9.6)	
WE ($\kappa = 0.65$)	0.05	0.23 (0.13)	126.9 (9.4)	0.87	0.74 (0.10)	189.3 (13.7)	

Method	$H_0: p_0 = p_1 = p_2 = p_3 = 0.3$				$H_1: p_0 = 0.3, p_1 = 0.4, p_2 = 0.5, p_3 = 0.6$				
Wethou	α	p*(s.e)	ENS(s.e.)		$(1 - \eta)$	p*(s.e.)	ENS (s.e.)		
MAB	0.00	0.25 (0.13)	24.0 (4.10)		0.00	0.49 (0.21)	41.6 (5.4)		
WE ($\kappa=0.55$)	0.01	0.20 (0.15)	24.0 (4.10)		0.11	0.50 (0.27)	40.7 (5.9)		
FR	0.05	0.25 (0.04)	24.0 (4.10)		0.50	0.25 (0.04)	36.0 (4.3)		
WE ($\kappa = 0.65$)	0.05	0.24 (0.07)	24.0 (4.05)		0.52	0.47 (0.21)	40.2 (4.8)		

Conclusion

- Simple, intuitively clear, can be computed by non-statisticians
- \bullet Penalty parameter κ reflects the trade-off between ENS and Power
- Performs better than currently used approaches

	MAB	FR
Power	higher	same
ENS	same	higher

- Can be applied to any trial with the target $\gamma \in (0,1)$
- Theoretical result: the design is consistent
- The criterion can be generalized for multinomial outcomes

