An information-theoretic Phase I/II design for molecularly targeted agents that does not require an assumption of monotonicity

Pavel Mozgunov, Thomas Jaki

Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics and Statistics, Lancaster University, UK

July 13, 2018

Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 633567.

Immunotherapy (MTA) + Chemotherapy:

- 2/3 days immunotherapy AFTER chemotherapy (S_1/S_2)
- 4 days immunotherapy OVERLAP chemotherapy for 1/2 days (S_3/S_4)
- binary toxicity and efficacy endpoints

Immunotherapy (MTA) + Chemotherapy:

- 2/3 days immunotherapy AFTER chemotherapy (S_1/S_2)
- 4 days immunotherapy OVERLAP chemotherapy for 1/2 days (S_3/S_4)
- binary toxicity and efficacy endpoints

Regimen	R ₁	R_2	R ₃	R ₄	R ₅	R_6
Cycle 1		S_1	S_2	<i>S</i> ₃	<i>S</i> ₃	S_4
Cycle 2	S_1	S_2	S_2	S_3	S_4	S_4

Immunotherapy (MTA) + Chemotherapy:

- 2/3 days immunotherapy AFTER chemotherapy (S_1/S_2)
- 4 days immunotherapy OVERLAP chemotherapy for 1/2 days (S_3/S_4)
- binary toxicity and efficacy endpoints

Regimen	R ₁	R_2	R ₃	R ₄	R ₅	R_6
Cycle 1		S_1	S_2	<i>S</i> ₃	<i>S</i> ₃	S_4
Cycle 2	S_1	S_2	S_2	S_3	S_4	S_4

6 toxicity orderings

Immunotherapy (MTA) + Chemotherapy:

- 2/3 days immunotherapy AFTER chemotherapy (S_1/S_2)
- 4 days immunotherapy OVERLAP chemotherapy for 1/2 days (S_3/S_4)
- binary toxicity and efficacy endpoints

Regimen	R ₁	R_2	R ₃	R ₄	R ₅	R_6
Cycle 1		S_1	S_2	<i>S</i> ₃	<i>S</i> ₃	S_4
Cycle 2	S_1	S_2	S_2	S_3	S_4	S_4

6 toxicity orderings and 48 efficacy orderings,

Immunotherapy (MTA) + Chemotherapy:

- 2/3 days immunotherapy AFTER chemotherapy (S_1/S_2)
- 4 days immunotherapy OVERLAP chemotherapy for 1/2 days (S_3/S_4)
- binary toxicity and efficacy endpoints

Regimen	R ₁	R_2	R ₃	R ₄	R ₅	R_6
Cycle 1		S_1	S_2	<i>S</i> ₃	<i>S</i> ₃	S_4
Cycle 2	S_1	S_2	S_2	S_3	S_4	S_4

6 toxicity orderings and 48 efficacy orderings, but only 36 patients

Immunotherapy (MTA) + Chemotherapy:

- 2/3 days immunotherapy AFTER chemotherapy (S $_1/S_2$)
- 4 days immunotherapy OVERLAP chemotherapy for 1/2 days (S_3/S_4)
- binary toxicity and efficacy endpoints

Regimen	R ₁	R_2	R ₃	R ₄	R ₅	R_6
Cycle 1		S_1	S_2	<i>S</i> ₃	<i>S</i> ₃	S_4
Cycle 2	S_1	S_2	S_2	S_3	S_4	S_4

6 toxicity orderings and 48 efficacy orderings, but only 36 patients

The aim is to find the optimal regimen (maximum efficacy, least toxicity)

Immunotherapy (MTA) + Chemotherapy:

- 2/3 days immunotherapy AFTER chemotherapy (S_1/S_2)
- 4 days immunotherapy OVERLAP chemotherapy for 1/2 days (S_3/S_4)
- binary toxicity and efficacy endpoints

Regimen	R ₁	R_2	R ₃	R ₄	R ₅	R_6
Cycle 1		S_1	S_2	<i>S</i> ₃	<i>S</i> ₃	S_4
Cycle 2	S_1	S_2	S_2	S_3	S_4	S_4

6 toxicity orderings and 48 efficacy orderings, but only 36 patients

The aim is to find the **optimal** regimen (maximum efficacy, least toxicity) or at least

correct regimen (maximum efficacy while still safeguarding patients)

P. Mozgunov (Lancaster University)

Dose-finding Phase I/II design for MTAs

IDEAS

• Current methods: model-based approaches Challenge: many parameters/orderings to be estimated/considered

• Current methods: model-based approaches Challenge: many parameters/orderings to be estimated/considered

• Alternative: a design relaxing parametric/monotonicity assumptions

Step 1: Quantify the uncertainty

Outcome	Probability	Optimal characteristics
Efficacy + No Toxicity	θ_1	γ_1
No Efficacy $+$ No Toxicity	θ_2	γ_2
Toxicity	$ heta_3 = 1 - heta_1 - heta_2$	$\gamma_3 = 1 - \gamma_1 - \gamma_2$

Step 1: Quantify the uncertainty

Outcome	Probability	Optimal characteristics
Efficacy + No Toxicity	θ_1	γ_1
No Efficacy $+$ No Toxicity	θ_2	γ_2
Toxicity	$ heta_3 = 1 - heta_1 - heta_2$	$\gamma_3=1-\gamma_1-\gamma_2$

One can quantify the **amount of the uncertainty** in the experiment aiming to assign as many as possible patients to the optimal regimen.

Step 1: Quantify the uncertainty

Outcome	Probability	Optimal characteristics
Efficacy + No Toxicity	θ_1	γ_1
No Efficacy $+$ No Toxicity	θ_2	γ_2
Toxicity	$ heta_3 = 1 - heta_1 - heta_2$	$\gamma_3=1-\gamma_1-\gamma_2$

One can quantify the **amount of the uncertainty** in the experiment aiming to assign as many as possible patients to the optimal regimen.

Using information-theoretic arguments, the "information" about regimen is

$$\delta\left(oldsymbol{ heta},oldsymbol{\gamma}
ight):=rac{\gamma_1^2}{ heta_1}+rac{\gamma_2^2}{ heta_2}+rac{(1-\gamma_1-\gamma_2)^2}{1- heta_1- heta_2}-1.$$

 $\delta(\theta, \gamma) = 0$ iff $\theta = \gamma$

Step 2: Re-parametrise

Efficacy + No Toxicity

$$egin{array}{rcl} heta_1 &=& p_e(1-p_t) \ \gamma_1 &=& \gamma_e(1-\gamma_t) \end{array}$$

No Efficacy + No Toxicity

$$\theta_2 = (1 - p_e)(1 - p_t)$$

$$\gamma_2 = (1 - \gamma_e)(1 - \gamma_t)$$

Step 3: Estimate and Randomise

$$\hat{p}_t^{(n)} = \frac{x_t}{n}, \qquad \hat{p}_e^{(n)} = \frac{x_e}{n}.$$

Let $\hat{\delta}_i^{(n_i)}$ be the plug-in estimate of the trade-off for regimen *i* after n_i

Step 3: Estimate and Randomise

$$\hat{p}_t^{(n)} = \frac{x_t}{n}, \qquad \hat{p}_e^{(n)} = \frac{x_e}{n}.$$

Let $\hat{\delta}_i^{(n_i)}$ be the plug-in estimate of the trade-off for regimen *i* after n_i

Randomisation between two "best" regimens

The next patient is allocated to regimen k with probability proportional to

 $1/\hat{\delta}_k^{(n_k)}$

M = 6 regimens and N = 36 patients

M = 6 regimens and N = 36 patients

We study

- the proportion of optimal selections (maximum efficacy, least toxicity)
- (a) the proportion of **correct** selections (maximum efficacy, acceptable T)

M = 6 regimens and N = 36 patients

We study

- the proportion of optimal selections (maximum efficacy, least toxicity)
- It he proportion of correct selections (maximum efficacy, acceptable T)

Scenarios:

8 scenarios for single-agent studies \rightarrow six permutations wrt toxicity orderings.

M = 6 regimens and N = 36 patients

We study

- the proportion of optimal selections (maximum efficacy, least toxicity)
- It he proportion of correct selections (maximum efficacy, acceptable T)

Scenarios:

8 scenarios for single-agent studies \rightarrow six permutations wrt toxicity orderings.

Comparator:

Extended POCRM design by Wages and Tait (2015)

Results

P. Mozgunov (Lancaster University)

Dose-finding Phase I/II design for MTAs

IDEAS

Results

P. Mozgunov (Lancaster University)

Dose-finding Phase I/II design for MTAs

July 13, 2018

9 / 10

IDEAS

Conclusions

- Performs **comparably or better** than model-based alternatives in majority of scenarios
- Robust to true ordering
- Results in fewer toxicities and comparable number of efficacies

Conclusions

- Performs **comparably or better** than model-based alternatives in majority of scenarios
- Robust to true ordering
- Results in fewer toxicities and comparable number of efficacies
- Further developments: Continuous efficacy (toxicity) endpoint

References

- Mozgunov, P. and Jaki, T. (2018) An information-theoretic phase i/ii design for molecularly targeted agents that does not require an assumption of monotonicity. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, **68**, 1–24, Epub.
- Riviere, M.-K., Yuan, Y., Jourdan, J.-H., Dubois, F. and Zohar, S. (2016) Phase i/ii dose-finding design for molecularly targeted agent: Plateau determination using adaptive randomization. *Statistical Methods in Medical Research*, **27**, 466–479.
- Wages, N. A. and Tait, C. (2015) Seamless phase i/ii adaptive design for oncology trials of molecularly targeted agents. *Journal of Biopharmaceutical Statistics*, **25**, 903–920.

Results (II)

Scenario	1	2	3	4	5	6	7	8	9
	Toxicity responses								
Proposed	2.5	6.4	3.2	4.4	7.0	7.7	5.0	5.1	3.9
CRM	4.1	5.0	4.5	7.1	7.9	8.7	5.9	6.0	3.3
	Efficacy responses								
Proposed	23.7	14.4	20.8	19.9	18.4	12.5	22.7	22.8	15.4
CRM	24.5	14.4	21.0	21.4	19.0	13.8	23.4	23.5	15.8

