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Background & 
Motivation



Cutoff estimation so far..
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Especially in oncology, increasing interest/need to identify potential (treatment) 
responders

Using selected (sets of) biomarkers for patient selection requires determination of 
appropriate cutoff value

Need to use utility functions that take specific requirements (costs, specificity, 
sensitivity,…) into account

Commonly used measures: Youden index, Predictive values, Diagnostic 
Likelihood Ratios



Commonly used measures
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Classification probabilities: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃 𝑇𝑇+ 𝑌𝑌 = 1 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃 𝑇𝑇− 𝑌𝑌 = 0

Youden index: 𝐽𝐽 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐{𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆) + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆) − 1}
To what degree does the test reflect the true disease status?

Predictive Values: PPV = 𝑃𝑃 𝑌𝑌 = 1 𝑇𝑇+ and 1 − NPV = 𝑃𝑃 𝑌𝑌 = 1 𝑇𝑇−

𝑃𝑃𝑆𝑆𝑃𝑃 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐 𝑃𝑃𝑃𝑃𝑃𝑃 𝑆𝑆 + 𝑁𝑁𝑃𝑃𝑃𝑃 𝑆𝑆 − 1
How likely is disease given test result?

Diagnostic likelihood ratios (DLR+, DLR-)
By how much does the test change knowledge of disease status?



How likely is disease given test result?
Motivation
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Estimate a reliable cutoff (denoted by cp) on a potentially predictive biomarker that can be
used for patient selection/classification given their test results

Estimate the uncertainty around the cutoff 

Take prior information into account



Bayesian 
Approach
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Model
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Binary response 𝑌𝑌 ∈ {0,1}

Biomarker assay: (Continuous or ordinal) biomarker 𝑋𝑋

Higher values of 𝑋𝑋 are associated with increased probability of response

A step function is used to model the probability of response

The cutoff and predictive values are parameters of the model

Model

𝑌𝑌|𝑋𝑋 ~ 𝐵𝐵𝑆𝑆𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑆𝑆

𝑆𝑆 = 𝑃𝑃 𝑌𝑌 = 1 𝑋𝑋 = �
𝑃𝑃 𝑌𝑌 = 1 𝑋𝑋 ≤ 𝑆𝑆𝑆𝑆 = 𝑆𝑆1

𝑃𝑃 𝑌𝑌 = 1 𝑋𝑋 > 𝑆𝑆𝑆𝑆 = 𝑆𝑆2

Require 𝑆𝑆2 > 𝑆𝑆1



Priors
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𝑆𝑆1~ 𝑈𝑈𝑆𝑆𝐵𝐵𝑈𝑈𝐵𝐵𝐵𝐵𝑚𝑚(0, 1) and 𝑆𝑆2~ 𝑈𝑈𝑆𝑆𝐵𝐵𝑈𝑈𝐵𝐵𝐵𝐵𝑚𝑚 𝑆𝑆1, 1

We considered different prior specifications for 𝑆𝑆𝑆𝑆

Uniform prior (UP)

Informative prior precise (IPP)

(high probability on the true cutpoint)

Informative prior imprecise (IPN)

(the true cutpoint is at the tail of the distribution)

Mixture prior (UP+IPP)

𝑆𝑆𝑆𝑆 = w ∗ 𝑈𝑈𝑈𝑈𝑈𝑈 + 1 − 𝑤𝑤 ∗ 𝑈𝑈𝐼𝐼𝑈𝑈𝑈𝑈
𝑤𝑤~ 𝑈𝑈𝑆𝑆𝐵𝐵𝑈𝑈𝐵𝐵𝐵𝐵𝑚𝑚( 0, 1)

Figure: Density plots for the priors IPP and IPN. For the IPP prior, 
the true cutoff cp, lies in a high probability region, while for the IPN 
prior the true cutoff value lies on the tail of the distribution.



Application
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Prostate Cancer Data
Application
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Total Prostate Specific Antigen (PSA) was measured (on the log scale) on 683 
subjects (study by Etzioni et al.,1999 as described in Pepe, 2003)

Total PSA is found to be a marker with fairly good accuracy

Estimate a cutoff on the PSA that takes into account the clinical benefit of the 
marker



Posterior summaries for the PSA cutoff
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For the Bayesian method, we use MCMC Metropolis-Hastings 

the posterior mean of the cutoff is 1.30 with 95% credible interval (1.27-1.38)

Figure: Plot of the posterior distribution for the parameter 𝑆𝑆𝑆𝑆 (left panel), 𝑆𝑆1 (middle panel) 
𝑆𝑆2(right panel) estimated by the Bayesian model. The red vertical line denotes the median 
of the distribution.

Posterior mean of 𝑆𝑆1 is 0.18 with
95% credible interval (0.15-0.21)

Posterior mean of 𝑆𝑆2 is 0.75 with
95% credible interval (0.70-0.79) 



Results for PSA cutoff
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Maximum Likelihood Estimator with 95% confidence interval

The MLE of the cutoff is 1.29 with 95% CI (1.27-1.31)

The MLE for 𝑆𝑆1is 0.18 with 95% confidence interval (0.15-0.21) and

for 𝑆𝑆2 is 0.75 with 95% confidence interval (0.68-0.81)

PSI= max{𝑆𝑆2- 𝑆𝑆1} with 95% Bootstrapped confidence interval.

Resampling the data B=500 times

The cutoff with the PSI method is 3.63 with 95% bootstrapped CI (2.00-3.77)

At that cut-off the 𝑆𝑆2 and 𝑆𝑆1 is equal to 1 and 0.32 respectively.



Simulation 
Study

/// Eleni Vradi ///June 4, 2018/// PSI Conference 2018/// Bayesian cutoff selection14



Scenario 1
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𝑋𝑋~𝑁𝑁𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝐵𝐵(7,1) n=200 generating model: step function

Figure: Bayesian posterior means (left boxplots), MLE (middle boxplots) and PSI (right boxplots) estimators for the 
parameters 𝑆𝑆𝑆𝑆, 𝑆𝑆1,𝑆𝑆2 over 10 000 simulation runs for n=200. The black horizontals dashed lines are the true
parameter values
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Scenario 1
𝑋𝑋~𝑁𝑁𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝐵𝐵(7,1) n=50 generating model: step function

Figure: Bayesian posterior means (left boxplots), MLE (middle boxplots) and PSI (right boxplots) estimators for the 
parameters 𝑆𝑆𝑆𝑆, 𝑆𝑆1,𝑆𝑆2 over 10 000 simulation runs for n=50. The black horizontals dashed lines are the true parameter
values



Scenario 2
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Figure: Bayesian posterior means (left boxplots), MLE (middle boxplots) and PSI (right boxplots) estimators for the 
parameters 𝑆𝑆𝑆𝑆, 𝑆𝑆1,𝑆𝑆2 over 10 000 simulation runs. The black horizontals lines are the population parameters as 
calculated by minimizing the Kullback-Liebler divergence.

𝑋𝑋~𝑁𝑁𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝐵𝐵(7,2) n=200                                generating model: logistic function
𝛽𝛽0= −3,𝛽𝛽1 = 0.5



𝑋𝑋~𝑁𝑁𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝐵𝐵 5,1 + 𝑁𝑁𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝐵𝐵 9,1 n=200        generating model: step function with 2 steps

Scenario 3
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Figure: Boxplots of the Bayesian posterior mean (left boxplots), MLE (middle boxplots) and PSI (right boxplots) 
estimators for 𝑆𝑆𝑆𝑆, 𝑆𝑆1, 𝑆𝑆2 over 10 000 simulation runs. The black lines correspond to the true values of 
𝑆𝑆𝑆𝑆1, 𝑆𝑆𝑆𝑆2, 𝑆𝑆1,𝑆𝑆2, 𝑆𝑆3.



𝑋𝑋~𝑁𝑁𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝐵𝐵 5,1 + 𝑁𝑁𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝐵𝐵 9,1 n=200        generating model: step function with 2 steps

Scenario 3
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Figure: Distribution of the modes of the posterior distribution for the �𝑆𝑆𝑆𝑆, over 10,000 simulation runs estimated by the Bayesian model. 
If the posterior density is unimodal, then the only mode of the distribution is plotted (noSim=5,733) (left boxplot). In case the posterior 
distribution is bimodal (noSim=4,267), then the two modes are plotted (middle boxplots). The black lines correspond to the true values 
of 𝑆𝑆𝑆𝑆1 = 6, 𝑆𝑆𝑆𝑆2 = 10.



Conclusion
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A Bayesian model to estimate the cutoff of a biomarker assay and the uncertainty 
around this estimate

Derive probabilistic statements about the predictive values

Even though a step function is a strong assumption, the estimates of the assumed 
step model are consistent for the parameter values for which the KL divergence from 
the true model is minimized

The estimates (posterior mean) are shown to be nearly unbiasted

Good coverage (95%) and small interval width (precision)

Highly informative prior -> gain in precision and accuracy

Mixture prior to deal with a possible data-prior conflict



Future work
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Estimate the cutoff associated with a target utility value, i.e. PPV=0.9

(!) Whether this cutoff exists would depend on the relationship between the
biomarker and response

Extensions

Time-to-event data

Multiple cutoffs

Multiple biomarkers
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