Scale Loss Score (SLoS): a novel measure of drug benefit-risk assessment

Gaelle Saint-Hilary 1 , Veronique Robert 2 , Mauro Gasparini 1 , Thomas Jaki 3 and Pavel Mozgunov 3

Introduction

- ► MultiCriteria Decision Analysis (MCDA) is a popular quantitative method to assess the benefit-risk (BR) balance of treatments: it permits to summarize the benefits and the risks of a drug in a single utility score
- ► The utility score is often derived using a **linear model** which might lead to **counter-intuitive conclusions**, for example, a recommendation of a non-effective drug
- ▶ We propose **Scale Loss Score** (**SLoS**) as a new tool for benefit-risk assessment: it is based on strong theoretical principles, addresses the issues of the linear MCDA model and can lead to more **meaningful recommendations**

Notations

 ξ_{ij} : performance of treatment i on criterion j, $j = 1, \ldots, n$

 $u_j(\xi_{ij})$: linear partial value functions - map the performances on criterion j to a (0,1) scale $\xi_{ij} - \xi'_{ij}$

 $u_{j}(\xi_{ij}) = \frac{\xi_{ij} - \xi'_{ij}}{\xi''_{ij} - \xi'_{ij}}, \quad \xi'_{ij} \text{ and } \xi''_{ij} \text{ the worst and best values}$

 w_j and \tilde{w}_j : weight reflecting the importance of criterion j

Linear MCDA

MCDA linear utility score:

$$u(\boldsymbol{\xi}_i, \mathbf{w}) := \sum_{j=1}^n w_j u_j(\boldsymbol{\xi}_{ij})$$

Higher utility score \rightarrow more preferable BR balance

- Benefit-risk trade-off is the **same** for all values of risk / benefit
- Drugs with no benefit or extreme risk can be recommended

SLoS

Scale Loss Score (SLoS):

$$l(\boldsymbol{\xi}_i, \tilde{\boldsymbol{w}}) := \sum_{j=1}^n \left(\frac{1}{u_j(\xi_{ij})}\right)^{\tilde{w}_j}$$

Lower loss score → more preferable BR balance

- For a given increase in benefit, a **smaller** increase in risk is tolerated if benefit is high than if it is low
- Drugs with no benefit or extreme risk can never be recommended

Examples

Fictive examples

2 criteria, fixed parameter values and $w = \tilde{w} = 0.25$

	Example 1		Example 2	
	Low benefit and risk		High benefit and risk	
	Drug 1	Drug 2	Drug 1	Drug 2
Benefit	0%	30%	96%	50%
Risk	9%	20%	100%	85%
MCDA	0.6825	0.6750	0.2400	0.2375
SLoS	+∞	2.5334	+∞	5.3381

→ SLoS strongly penalizes extremely low benefit values and extremely high risk values

Case study: telithromycin

IMI PROTECT Benefit-Risk Group example Proba(telithromycin > β -lactam antiobiotics)

Community Acquired Acute Bacterial
Pneumonia (CAP) Sinusitis (ABS)

MCDA 59% 71%

SLoS 51% 55%

→ SLoS results are more in line with the regulatory authorities concerns on ABS indication (CHMP reassessment and FDA removal)

Conclusion

Results of simulations comparing MCDA and SLoS:

- Both are robust to correlations between outcomes
- Similar conclusions in many cases
- ► Clear advantage of SLoS when drugs have no benefit or extreme risk

Scale Loss Score (SLoS) is a novel, simple and valuable tool for BR assessment

