# A Bayesian information theoretic design for Phase I dose finding trials without monotonicity assumption

#### Pavel Mozgunov, Thomas Jaki

Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics and Statistics, Lancaster University, UK

February 28th, 2018

PSI One Day Meeting: Bayesian Methods for Dose Finding and Biomarkers

Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 633567.



#### Dose escalation

Consider:

- $\bullet\,$  First-in-men clinical trial  $\to\,$  rough prior knowledge about toxicities for humans.
- Range of *m* regimens (doses, combinations, schedules)
- *n* patients



#### Dose escalation

Consider:

- $\bullet\,$  First-in-men clinical trial  $\to\,$  rough prior knowledge about toxicities for humans.
- Range of *m* regimens (doses, combinations, schedules)
- *n* patients

Goal:

• Find the maximum tolerated regimen that corresponds to a controlled level of toxicity  $\gamma$ , for examples,  $\gamma \in (0.20, 0.35)$  for many oncology trials



# Single agent dose-escalation designs

Model-based methods

- Algorithm based methods
  - '3+3' design

• EWOC

CRM

• Biased Coin Design

Fundamental assumption - a monotonic dose-response relation.



# Single agent dose-escalation designs

Model-based methods

Algorithm based methods

CRM

• '3+3' design

• EWOC

• Biased Coin Design

Fundamental assumption - a monotonic dose-response relation.

Cannot be applied to:

• Combination trials with many treatments.

Scheduling of drugs

• Non-monotonic dose-toxicity relations



# Unknown ordering problem. Example (I)

Let us consider drugs combination dose-escalation trial with

- 3 dose levels of drug A:  $A_1, A_2, A_3$
- 3 dose levels of drug  $B: B_1, B_2, B_3$

| $(A_1; B_3)$ | $(A_2; B_3)$ | $(A_3; B_3)$ |
|--------------|--------------|--------------|
| $(A_1; B_2)$ | $(A_2; B_2)$ | $(A_3; B_2)$ |
| $(A_1; B_1)$ | $(A_2; B_1)$ | $(A_3; B_1)$ |



# Unknown ordering problem. Example (I)

Let us consider drugs combination dose-escalation trial with

- 3 dose levels of drug A:  $A_1, A_2, A_3$
- 3 dose levels of drug  $B: B_1, B_2, B_3$

| $(A_1; B_3)$ | $(A_2; B_3)$ | $(A_3; B_3)$ |
|--------------|--------------|--------------|
| $(A_1; B_2)$ | $(A_2; B_2)$ | $(A_3; B_2)$ |
| $(A_1; B_1)$ | $(A_2; B_1)$ | $(A_3; B_1)$ |

Even assuming monotonicity one drug being fixed, we cannot order  $(A_1; B_2)$  and  $(A_2; B_1)$ ;  $(A_1; B_3)$  and  $(A_2; B_1)$ ;  $(A_1; B_3)$  and  $(A_2; B_1)$ ;  $(A_1; B_3)$  and  $(A_3; B_1)$  and so on...



# Unknown ordering problem. Example (II)



5 / 27

IDEAS

# Unknown ordering problem. Example (III)



Information-theoretic design

IDEAS

# Violation of monotonicity assumption

• Dose-schedule trials

6 days treatment: *1 pill every day* vs *2 pills every two days* What is more toxic?



# Violation of monotonicity assumption

• Dose-schedule trials

6 days treatment: *1 pill every day* vs *2 pills every two days* What is more toxic?

• Combination-schedule trial

Various combination are given under different schedules studying both *interaction* and *overlapping* effects



## Current methods

Drug combinations

- Six-parameter model (Thall P. et al, 2003)
- Copula regression (G. Yin, Y. Yuan, 2009)
- POCRM (N.Wages, M. Conoway, J. O'Quigley, 2011)

Dose-schedule

- POCRM (N.Wages, M. Conoway, 2014)
- Parametric model (Guo et.al, 2014)

Combination-schedule

• ?



# Current methods

Drug combinations

- Six-parameter model (Thall P. et al, 2003)
- Copula regression (G. Yin, Y. Yuan, 2009)
- POCRM (N.Wages, M. Conoway, J. O'Quigley, 2011)

Dose-schedule

- POCRM (N. Wages, M. Conoway, 2014)
- Parametric model (Guo et.al, 2014)

Combination-schedule

• ?

General restrictions:

- Strong model assumptions are usually needed
- Two combinations might be considered only
- Monotonicity assumption (to various extents)





To propose a dose-escalation procedure that **does not require any parametric assumptions** (including monotonicity between regimens).



## Problem formulation

- Toxicity probabilities  $Z_1, \ldots, Z_m$  are random variables with Beta prior  $B(\nu_j + 1, \beta_j \nu_j + 1), \nu_j > 0, \beta_j > 0.$
- $n_j$  patients assigned to the regimen j and  $x_j$  toxicities observed.
- Beta posterior  $f_{n_j} B(x_j + \nu_j + 1, n_j x_j + \beta_j \nu_j + 1)$ .
- Let 0 < α<sub>j</sub> < 1 be the unknown parameter in the neighbourhood of which the probability of toxicity is concentrated.
- Target toxicity  $\gamma$ .

#### Information theory concepts

1) A statistical experiment of estimation of a toxicity probability. The Shannon differential entropy (DE)  $h(f_n)$  of the PDF  $f_n$  is defined as

$$h(f_n) = -\int_0^1 f_n(p) \log f_n(p) \mathrm{d}p \tag{1}$$

with the convention  $0\log 0 = 0$ .



## Information theory concepts

**1)** A statistical experiment of estimation of a toxicity probability. The Shannon differential entropy (DE)  $h(f_n)$  of the PDF  $f_n$  is defined as

$$h(f_n) = -\int_0^1 f_n(p) \log f_n(p) \mathrm{d}p \tag{1}$$

with the convention  $0\log 0 = 0$ .

#### 2) A statistical experiment of a sensitive estimation.

The weighted Shannon differential entropy (WDE),  $h^{\phi_n}(f_n)$ , of the RV  $Z^{(n)}$  with positive weight function  $\phi_n(p,\gamma)$  is defined as

$$h^{\phi_n}(f_n) = -\int_0^1 \phi_n(p) f_n(p) \log f_n(p) \mathrm{d}p.$$
(2)



# Weight Function

The Beta-form weight function

$$\phi_n(\mathbf{p}) = \Lambda p^{\gamma \sqrt{n}} (1 - \mathbf{p})^{(1 - \gamma) \sqrt{n}}.$$
(3)





#### Regimen-escalation criterion

The Information Gain is the difference of statistical informations in two experiments:

#### Theorem

Let  $h(f_n)$  and  $h^{\phi_n}(f_n)$  be the DE and WDE corresponding to PDF  $f_n$  when  $x \sim \alpha n$  with the weight function  $\phi_n$  given in (3). Then

$$\lim_{n\to\infty} \left( h^{\phi_n}(f_n) - h(f_n) \right) = \frac{(\alpha - \gamma)^2}{2\alpha(1 - \alpha)} \equiv \Delta.$$
(4)

Therefore, for a regimen  $d_j$ , j = 1, ..., m, we obtained that

$$\Delta_j \equiv rac{(lpha_j - \gamma)^2}{2lpha_j(1 - lpha_j)}.$$

Criterion:

$$\Delta_j = \inf_{i=1,\ldots,m} \Delta_i.$$



#### Estimation

Consider the mode of the posterior distribution  $f_{n_i}$ 

$$\hat{p}_j^{(n)} = rac{x_j + 
u_j}{n_j + eta_j}.$$

Then the following "plug-in" estimator  $\hat{\Delta}_{j}^{(n)}$  may be used

$$\hat{\Delta}_{j}^{(n)} = \frac{(\hat{p}_{j}^{(n)} - \gamma)^{2}}{\hat{p}_{j}^{(n)}(1 - \hat{p}_{j}^{(n)})}.$$
(5)



### Regimen escalation design

Let  $d_j(i)$  be a regimen  $d_j$  recommended for patient *i*.

- The procedure starts from  $\hat{\Delta}_i^{(0)}$
- / patients were already assigned.

The  $(l+1)^{th}$  patient will be assigned to regimen k such that

$$d_j(l+1): \ \hat{\Delta}_k^{(l)} = \inf_{i=1,\dots,m} \hat{\Delta}_i^{(l)}, \ l=0,1,2,\dots,N.$$

We adopt regimen  $d_j(N+1)$  as the final recommended regimen.



#### Alternative angle

One can consider

$$\hat{\Delta}_{j}^{(n)} = rac{(\hat{p}_{j}^{(n)} - \gamma)^2}{\hat{p}_{j}^{(n)}(1 - \hat{p}_{j}^{(n)})}$$

as a loss function for a parameter defined on (0, 1).

This loss function penalize the values of  $\hat{p}_j^{(n)}$  close to 0 to 1 and by that 'pushes' the allocation from bounds to the neighbourhood of  $\gamma$ .



#### Alternative angle

One can consider

$$\hat{\Delta}_{j}^{(n)} = rac{(\hat{p}_{j}^{(n)} - \gamma)^2}{\hat{p}_{j}^{(n)}(1 - \hat{p}_{j}^{(n)})}$$

as a loss function for a parameter defined on (0, 1).

This loss function penalize the values of  $\hat{p}_j^{(n)}$  close to 0 to 1 and by that **'pushes' the allocation from bounds** to the neighbourhood of  $\gamma$ .

However, this loss function does not include any definition of safety. Thus, safety constraint is needed.

# Safety constrain

We propose the following SC for the investigated method. The method considers the regimen  $d_j$  as a safe if at the moment n its PDF satisfies the following condition

$$\int_{\gamma^*}^1 f_{n_j}(p) \mathrm{d}p \le \theta_n \tag{6}$$

where

- $\gamma^*$  is some threshold after which all regimens above are declared as regimens with excessive risk,  $\gamma^*=\gamma+0.2$
- $\theta_n$  is the level of probability that controls the overdosing
  - $\theta_n$  is a decreasing function of n
  - $\theta_0 = 1$
  - $\theta_N \leq 0.3$

# Simulations

For simulations below the following parameters were chosen:

- Cohort size c = 1
- Sample size N = 20
- Number of regimens m = 7
- The target probability  $\gamma=0.25$



## Investigated scenarios



19 / 27

# Specifying the prior

Assumptions:

- Rough beliefs about toxicity rates
- Prior belief: regimen-response curve is monotonic
- The escalation to be started from  $d_1$

The prior for regimen  $d_j$   $(1 \le j \le 7)$  is specified thought the mode  $\hat{p}_j^{(0)} = \frac{\nu_j}{\beta_j}$ . Starting from the bottom:  $\hat{p}_1^{(0)} = \gamma$ . The vector of modes  $\hat{\mathbf{p}}$  for all regimens is defined

 $\hat{\mathbf{p}} = [0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55]^{\mathrm{T}}.$ 

Rough prior  $\rightarrow \beta_j = \beta = 1$  for  $j = 1, \dots, m$ .



#### Alternative methods

We have also investigated

- Continual reassessment method (CRM)
- Partial ordering continual reassessment method (POCRM)
   All correct orderings used in simulation are incorporated in the model.
- Escalation with overdose control (EWOC) A target 25<sup>th</sup> percentile is used.
- Non-parametric optimal benchmark



# Simulation results. Ordering is correctly specified



# Simulation results. Ordering is wrongly specified.

|                       | $d_1$                 | $d_2$          | d <sub>3</sub>        | $d_4$          | $d_5$                 | $d_6$          | d7    | No    | TR   | Ñ     |
|-----------------------|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|-------|-------|------|-------|
| True                  | 0.05                  | 0.10           | 0.40                  | 0.35           | 0.25                  | 0.15           | 0.12  |       |      |       |
| $WDE_{SC}$            | 14.11                 | 19.13          | 11.77                 | 18.27          | 27.90                 | 8.50           | 0.23  | 0.15  | 4.26 | 19.99 |
| $CRM_{\mathrm{SC}}$   | 4.26                  | 19.90          | 17.70                 | 6.31           | 2.84                  | 3.00           | 46.10 | 0.31  | 3.26 | 19.92 |
| $POCRM_{\mathrm{SC}}$ | 2.87                  | 11.39          | 11.75                 | 9.32           | 19.11                 | 33.94          | 11.62 | 0.24  | 4.29 | 19.99 |
| $EWOC_{\mathrm{SC}}$  | 7.18                  | 24.90          | 18.60                 | 3.79           | 2.52                  | 3.79           | 30.60 | 6.62  | 2.73 | 18.89 |
|                       | <i>d</i> <sub>1</sub> | d <sub>2</sub> | <i>d</i> <sub>3</sub> | d <sub>4</sub> | <i>d</i> <sub>5</sub> | d <sub>6</sub> | d7    | No    | TR   | Ñ     |
| True                  | 0.35                  | 0.40           | 0.40                  | 0.35           | 0.25                  | 0.15           | 0.10  |       |      |       |
| $WDE_{SC}$            | 15.57                 | 12.65          | 13.31                 | 18.27          | 27.92                 | 8.90           | 0.58  | 9.96  | 5.81 | 19.73 |
| $CRM_{\mathrm{SC}}$   | 47.41                 | 2.51           | 0.97                  | 0.48           | 0.72                  | 0.40           | 30.10 | 27.30 | 4.27 | 15.96 |
| $POCRM_{\mathrm{SC}}$ | 16.81                 | 5.98           | 5.66                  | 12.42          | 20.10                 | 23.13          | 10.23 | 9.67  | 5.14 | 19.46 |
| $EWOC_{\mathrm{SC}}$  | 30.75                 | 1.26           | 0.78                  | 0.47           | 0.47                  | 0.31           | 9.78  | 56.15 | 3.30 | 11.02 |



# Simulation results. Highly toxic scenarios.

|                       | $d_1$ | <b>d</b> <sub>2</sub> | <b>d</b> 3 | $d_4$ | $d_5$ | $d_6$ | <b>d</b> 7 | No           | TR   | Ñ     |
|-----------------------|-------|-----------------------|------------|-------|-------|-------|------------|--------------|------|-------|
| True                  | 0.15  | 0.20                  | 0.50       | 0.55  | 0.60  | 0.65  | 0.70       |              |      |       |
| $WDE_{\mathrm{SC}}$   | 38.07 | 44.65                 | 6.59       | 3.44  | 1.48  | 0.28  | 0.02       | 5.47         | 5.94 | 19.77 |
| $CRM_{\mathrm{SC}}$   | 37.47 | 37.85                 | 17.41      | 2.92  | 0.36  | 0.07  | 0.00       | 3.92         | 5.10 | 19.41 |
| $POCRM_{\mathrm{SC}}$ | 33.57 | 37.76                 | 13.27      | 2.55  | 0.54  | 1.33  | 6.04       | 4.95         | 6.06 | 19.82 |
| $EWOC_{\mathrm{SC}}$  | 51.00 | 26.11                 | 11.01      | 0.88  | 0.13  | 0.00  | 0.00       | 10.87        | 3.60 | 16.82 |
|                       |       |                       |            |       |       |       |            |              |      |       |
| True                  | 0.50  | 0.55                  | 0.60       | 0.65  | 0.70  | 0.75  | 0.80       | No           |      |       |
| $WDE_{SC}$            | 13.63 | 5.53                  | 2.45       | 0.88  | 0.27  | 0.06  | 0.00       | 77.17        | 8.02 | 14.28 |
| $CRM_{\mathrm{SC}}$   | 32.24 | 0.32                  | 0.08       | 0.00  | 0.00  | 0.00  | 0.00       | 67.36        | 5.33 | 10.30 |
| $POCRM_{\mathrm{SC}}$ | 15.18 | 0.57                  | 0.12       | 0.04  | 0.01  | 3.06  | 0.08       | <b>80.94</b> | 7.12 | 12.59 |
| $EWOC_{\mathrm{SC}}$  | 16.17 | 0.00                  | 0.12       | 0.00  | 0.00  | 0.00  | 0.00       | 83.71        | 3.07 | 6.05  |



# Conclusions

The WDE-based method

- performs comparably to the model-based methods when the ordering is specified correctly scenarios
- outperform them in wrongly specified setting
- The time-varying safety constrain in the proposed form *can overcome overdosing problems* and increase the accuracy of the original method



## Extensions

- Phase II design (for trials of small populations)
- Phase I/II designs (including an activity endpoint; proposed for an ongoing trial)
- Designs with arbitrary number of endpoints and continuous outcomes



#### References



J. BABB, A. ROGATKO, S. ZACKS. Cancer phase I clinical trials: efficient dose escalation with overdose control. (1998). Statistics in Medicine, 17(10), 1103–20.





J. O'QUIGLEY, M. PEPE, L. FISHER, Continual reassessment method: A practical design for phase I clinical trials in cancer, 1990, Biometrics 46 33–48.



O'QUIGLEY J, PAOLETTI X, MACCARIO J., Non-parametric optimal design in dose finding studies, (2002) Biostatistics; 3: 51-56.



WAGES N., CONAWAY M., O'QUIGLEY J. (2011a). Continual reassessment method for partial ordering. Biometrics 67(4), 1555-1563.



# Safety constrain (II)

Why the time-varying SC is needed?

For instance,  $\beta = 1$  and  $\theta_n = \theta = 0.50$ . Then for a regimen with prior mode 0.40 or higher will never be considered by the method, because

$$\int_{0.45}^{1} f_0(p|x=0) \mathrm{d}p = 0.5107 > 0.50$$



# Safety constrain (II)

Why the time-varying SC is needed?

For instance,  $\beta = 1$  and  $\theta_n = \theta = 0.50$ . Then for a regimen with prior mode 0.40 or higher will never be considered by the method, because

$$\int_{0.45}^{1} f_0(p|x=0) \mathrm{d}p = 0.5107 > 0.50$$

Requirements to the function  $\theta_n$ 

- $\theta_n$  is a decreasing function of n
- $\theta_0 = 1$
- $\theta_N \leq 0.3$



# Choice of SC parameters

|                   | r     |       |       |       |       |       |       |       |  |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|                   | 0.010 | 0.015 | 0.020 | 0.025 | 0.030 | 0.035 | 0.040 | 0.045 |  |
| $\gamma^*=$ 0.55  | 0.00  | 0.32  | 4.32  | 18.47 | 36.15 | 49.06 | 61.49 | 75.70 |  |
|                   | 26.47 | 26.65 | 26.40 | 26.05 | 26.85 | 25.03 | 24.10 | 20.23 |  |
| ~* - 0.50         | 0.15  | 2.50  | 17.76 | 38.75 | 52.74 | 63.06 | 74.94 | 87.22 |  |
| $\gamma^* = 0.50$ | 26.27 | 26.22 | 26.53 | 27.24 | 25.46 | 23.30 | 19.35 | 17.10 |  |
| ~* - 0.45         | 1.13  | 12.72 | 35.72 | 56.49 | 67.16 | 77.55 | 86.53 | 93.49 |  |
| $\gamma^+ = 0.45$ | 26.15 | 26.02 | 26.81 | 25.18 | 22.26 | 21.75 | 15.16 | 11.05 |  |
| $\gamma^* = 0.40$ | 7.47  | 37.95 | 59.49 | 70.52 | 80.53 | 88.32 | 94.18 | 97.63 |  |
|                   | 26.04 | 25.91 | 24.90 | 21.98 | 17.66 | 14.47 | 8.05  | 3.51  |  |
| ~* - 0.25         | 33.98 | 58.22 | 74.42 | 84.14 | 90.52 | 94.86 | 97.90 | 99.20 |  |
| $\gamma^* = 0.35$ | 25.65 | 24.54 | 20.45 | 15.55 | 13.77 | 7.21  | 3.25  | 0.70  |  |
| .* - 0.20         | 55.51 | 77.02 | 87.21 | 92.99 | 96.50 | 98.55 | 99.37 | 99.83 |  |
| $\gamma^* = 0.30$ | 24.21 | 18.09 | 14.40 | 11.42 | 7.13  | 0.95  | 0.08  | 0.04  |  |

Table : Flat and unsafe scenarios for different parameters of the safety constraint. Results based on  $10^6$  simulations.



# Phase I/II design. Motivating trial

Combinations (immunotherapy + chemotherapy) under different schedules:

- 2 days immunotherapy AFTER chemotherapy  $(S_1)$
- 3 days immunotherapy AFTER chemotherapy (S<sub>2</sub>)
- 4 days immunotherapy OVERLAP with chemotherapy for 1 days ( $S_3$ )
- 4 days immunotherapy OVERLAP with chemotherapy for 2 days  $(S_4)$

Six regimens are considered in the trial:

| Regimen | R <sub>1</sub>        | $R_2$ | <b>R</b> <sub>3</sub> | <b>R</b> <sub>4</sub> | <b>R</b> <sub>5</sub> | $R_6$                 |
|---------|-----------------------|-------|-----------------------|-----------------------|-----------------------|-----------------------|
| Cycle 1 |                       | $S_1$ | $S_2$                 | <i>S</i> <sub>3</sub> | <i>S</i> <sub>3</sub> | <i>S</i> <sub>4</sub> |
| Cycle 2 | <i>S</i> <sub>1</sub> | $S_2$ | $S_2$                 | $S_3$                 | $S_4$                 | $S_4$                 |

- 6 toxicity orderings
- 48 efficacy orderings

## Choice of prior



Pavel Mozgunov, Thomas Jaki (Lancaster University)

31 / 27

PIDEAS