Improving a safety of the Continual Reassessment Method via a modified allocation rule

Pavel Mozgunov, Thomas Jaki

Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics and Statistics, Lancaster University, UK

June 4, 2018

2018 PSI Annual Conference, Amsterdam

Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 633567.

Consider a Phase I clinical trial with binary responses and two doses: d_1 , d_2 Goal is to find the maximum tolerated dose (MTD): $\gamma = 0.30$. 10 patients were assigned to each dose, 2 and 4 toxicities observed

Q: Which dose should be administered to the next patient?

Consider a Phase I clinical trial with binary responses and two doses: d_1 , d_2 Goal is to find the maximum tolerated dose (MTD): $\gamma = 0.30$. 10 patients were assigned to each dose, 2 and 4 toxicities observed

Q: Which dose should be administered to the next patient?

$$\left(\hat{p}_i - \gamma\right)^2 \tag{1}$$

The next patient can be assigned to either of doses, but one can argue that doses are not 'equal' for two reasons.

Consider a Phase I clinical trial with binary responses and two doses: d_1 , d_2 Goal is to find the maximum tolerated dose (MTD): $\gamma = 0.30$. 10 patients were assigned to each dose, 2 and 4 toxicities observed

Q: Which dose should be administered to the next patient?

$$\left(\hat{\rho}_i - \gamma\right)^2 \tag{1}$$

The next patient can be assigned to either of doses, but one can argue that doses are not 'equal' for two reasons.

• Criterion (1) ignores the randomness of the estimates.

 $\mathbb{P}(p_2 \in (0.25, 0.35)) > \mathbb{P}(p_1 \in (0.25, 0.35)).$

Consider a Phase I clinical trial with binary responses and two doses: d_1 , d_2 Goal is to find the maximum tolerated dose (MTD): $\gamma = 0.30$. 10 patients were assigned to each dose, 2 and 4 toxicities observed

Q: Which dose should be administered to the next patient?

$$\left(\hat{\rho}_i - \gamma\right)^2 \tag{1}$$

The next patient can be assigned to either of doses, but one can argue that doses are not 'equal' for two reasons.

• Criterion (1) ignores the randomness of the estimates.

 $\mathbb{P}(p_2 \in (0.25, 0.35)) > \mathbb{P}(p_1 \in (0.25, 0.35)).$

(2)
$$\hat{p}_2 = 0.4$$
 is an unacceptably high toxicity.

Consider a Phase I clinical trial with binary responses and two doses: d_1 , d_2 Goal is to find the maximum tolerated dose (MTD): $\gamma = 0.30$. 10 patients were assigned to each dose, 2 and 4 toxicities observed

Q: Which dose should be administered to the next patient?

$$\left(\hat{\rho}_i - \gamma\right)^2 \tag{1}$$

The next patient can be assigned to either of doses, but one can argue that doses are not 'equal' for two reasons.

• Criterion (1) ignores the randomness of the estimates.

 $\mathbb{P}(p_2 \in (0.25, 0.35)) > \mathbb{P}(p_1 \in (0.25, 0.35)).$

2 $\hat{p}_2 = 0.4$ is an unacceptably high toxicity.

It is usually of interest to balance two aims in a Phase I clinical trial

IDEAS

Current solutions

Safety:

Escalation with Overdose Control (EWOC) design by Babb et al. (1998):

$$\mathbb{E}\left(\alpha(\gamma - P_i)^+ + (1 - \alpha)(P_i - \gamma)^+\right)$$
(2)

- + Low average number of DLTs
- Underestimation of the MTD
- Modifications: α_n by Tighiouart et al. (2010) and Wheeler et al. (2017)

Current solutions

Safety:

Escalation with Overdose Control (EWOC) design by Babb et al. (1998):

$$\mathbb{E}\left(\alpha(\gamma - P_i)^+ + (1 - \alpha)(P_i - \gamma)^+\right)$$
(2)

- + Low average number of DLTs
- Underestimation of the MTD
- Modifications: α_n by Tighiouart et al. (2010) and Wheeler et al. (2017)

Safety & Uncertainty

Bayesian Logistic Regression Model (BLRM) by Neuenschwander et al. (2008). uses the whole distribution of the DLT probability and penalties for overly toxic intervals. For example, for $\gamma = 0.33$

$$L = \begin{cases} 1 \text{ if } p \in (0.00, 0.26); & 0 \text{ if } p \in (0.26, 0.41); \\ 1 \text{ if } p \in (0.41, 0.66); & 2 \text{ if } p \in (0.66, 1.00) \end{cases}$$

We propose a new criterion for selecting doses in dose-escalation trials that accounts for

- Oncertainty in the estimates
- 2 Ethical constraints

and requires only one additional parameter to be specified.

We propose a new criterion for selecting doses in dose-escalation trials that accounts for

- Oncertainty in the estimates
- 2 Ethical constraints

and requires only one additional parameter to be specified.

We incorporate the proposed criterion to the one-parameter Bayesian continual reassessment method (O'Quigley et al., 1990, CRM)

Novel Criterion

The main object of estimation is the probability of DLT $p_i \in (0, 1)$ Squared distance is not a reliable measure for objects on the unit interval (Aitchison, 1992).

Novel Criterion

The main object of estimation is the probability of DLT $p_i \in (0, 1)$ Squared distance is not a reliable measure for objects on the unit interval (Aitchison, 1992).

Instead, we propose a distance satisfying the desirable properties

$$\delta(\boldsymbol{p},\boldsymbol{\gamma}) = \frac{(\boldsymbol{p}-\boldsymbol{\gamma})^2}{\boldsymbol{p}(1-\boldsymbol{p})}.$$
(3)

•
$$\delta(\cdot) = 0$$
 at $p = \gamma$

•
$$\delta(\cdot) o \infty$$
 as $p o 0$ or $p o 1$

• The variance in denominator (Criterion 3 is a score statistic)

Novel Criterion

The main object of estimation is the probability of DLT $p_i \in (0, 1)$ Squared distance is not a reliable measure for objects on the unit interval (Aitchison, 1992).

Instead, we propose a distance satisfying the desirable properties

$$\delta(\boldsymbol{p},\boldsymbol{\gamma}) = \frac{(\boldsymbol{p}-\boldsymbol{\gamma})^2}{\boldsymbol{p}(1-\boldsymbol{p})}.$$
(3)

•
$$\delta(\cdot) = 0$$
 at $p = \gamma$

•
$$\delta(\cdot) o \infty$$
 as $p o 0$ or $p o 1$

• The variance in denominator (Criterion 3 is a score statistic)

In the illustration example above

$$\delta(\hat{p}_1 = 0.2, \gamma = 0.3) = 1/16$$
 and $\delta(\hat{p}_2 = 0.4, \gamma = 0.3) = 1/24$

(!) Single point estimate summarizes the information about uncertainty.

Introducing safety compound

The target toxicity γ is always less than 0.5. Then for estimates $\hat{p}_1 = \gamma - \theta$ and $\hat{p}_2 = \gamma + \theta$, symmetric criterion favours \hat{p}_2 .

Introducing safety compound

The target toxicity γ is always less than 0.5. Then for estimates $\hat{p}_1 = \gamma - \theta$ and $\hat{p}_2 = \gamma + \theta$, symmetric criterion favours \hat{p}_2 .

We introduce an asymmetry parameter a:

$$\delta(\boldsymbol{p},\gamma) = \frac{(\boldsymbol{p}-\gamma)^2}{\boldsymbol{p}^a(1-\boldsymbol{p})^{2-a}}.$$
(4)

0 < a < 1 implies more severe penalty for more toxic doses. (!) Selection of under toxic doses remain to be undesirable as well.

Introducing safety compound

The target toxicity γ is always less than 0.5. Then for estimates $\hat{p}_1 = \gamma - \theta$ and $\hat{p}_2 = \gamma + \theta$, symmetric criterion favours \hat{p}_2 .

We introduce an asymmetry parameter *a*:

$$\delta(\boldsymbol{p},\boldsymbol{\gamma}) = \frac{(\boldsymbol{p}-\boldsymbol{\gamma})^2}{\boldsymbol{p}^a(1-\boldsymbol{p})^{2-a}}.$$
(4)

0 < a < 1 implies more severe penalty for more toxic doses. (!) Selection of under toxic doses remain to be undesirable as well.

In the illustration example above, for a = 0.5

$$\delta(\hat{p}_1=0.2,\gamma=0.3,a=0.5)<\delta(\hat{p}_2=0.4,\gamma=0.3,a=0.5).$$

Asymmetry parameter (I)

Parameter a balances the trade-off between ethical concerns and uncertainty

How can one choose a meaningful value of a?

Asymmetry parameter (I)

Parameter a balances the trade-off between ethical concerns and uncertainty

How can one choose a meaningful value of a?

Value $a = 2\gamma$ leads to the same allocation as the squared distance $\rightarrow a < 2\gamma$ leads to more conservative allocation of patients.

Asymmetry parameter (I)

Parameter a balances the trade-off between ethical concerns and uncertainty

How can one choose a meaningful value of a?

Value $a = 2\gamma$ leads to the same allocation as the squared distance $\rightarrow a < 2\gamma$ leads to more conservative allocation of patients.

Let $(\gamma - \theta, \gamma + \theta)$ be an interval such that among two estimates standing on the same squared distance from γ , the lower estimate would be preferred

$$a = 2 imes \left(1 + \left(\log rac{\gamma - heta}{\gamma + heta}
ight) / \left(\log rac{1 - \gamma - heta}{1 - \gamma + heta}
ight)
ight)^{-1}$$

Bayesian continual reassessment method

DLT probability has the functional form $\psi(d_i, \beta) = d_i^{\exp(\beta)}$.

 $f_0(.)$ is prior distribution of β . After j patients have already been assigned to doses $d(1), \ldots, d(j)$ and binary responses $\mathbb{Y}_j = [y_1, \ldots, y_j]^T$ were observed the posterior $f_i(\beta)$ is obtained.

Bayesian continual reassessment method

DLT probability has the functional form $\psi(d_i, \beta) = d_i^{\exp(\beta)}$.

 $f_0(.)$ is prior distribution of β . After j patients have already been assigned to doses $d(1), \ldots, d(j)$ and binary responses $\mathbb{Y}_j = [y_1, \ldots, y_j]^T$ were observed the posterior $f_i(\beta)$ is obtained.

Then, the dose d_k minimising

$$\mathbb{E}\left(\frac{\left(\psi(d_i,\beta)-\gamma\right)^2}{\psi(d_i,\beta)^a(1-\psi(d_i,\beta))^{2-a}}\right)$$
(5)

among all d_1, \ldots, d_m is recommended for the next group of patients

Bayesian continual reassessment method

DLT probability has the functional form $\psi(d_i, \beta) = d_i^{\exp(\beta)}$.

 $f_0(.)$ is prior distribution of β . After j patients have already been assigned to doses $d(1), \ldots, d(j)$ and binary responses $\mathbb{Y}_j = [y_1, \ldots, y_j]^T$ were observed the posterior $f_i(\beta)$ is obtained.

Then, the dose d_k minimising

$$\mathbb{E}\left(\frac{\left(\psi(d_i,\beta)-\gamma\right)^2}{\psi(d_i,\beta)^a(1-\psi(d_i,\beta))^{2-a}}\right)$$
(5)

among all d_1, \ldots, d_m is recommended for the next group of patients

Convex Infinite Bounds Penalization with parameter *a* as CIBP(a).

We revisit the Everolimus Trial in patients with HER2-overexpressing Metastatic Breast Cancer $\gamma = 0.3$. The study considers 3 regimens given together with Paclitaxel and Trastuzumab (PT):

- Daily dosing of Everolimus 5mg plus PT (d_1)
- 2 Daily dosing of Everolimus 10mg plus PT (d_2)
- Weekly dosing of Everolimus 30mg plus PT (d_3)

Dose	d_1	<i>d</i> ₂	d ₃
Number of Patients assigned	6	17	10
Number of DLTs	3	6	7

We revisit the Everolimus Trial in patients with HER2-overexpressing Metastatic Breast Cancer $\gamma = 0.3$. The study considers 3 regimens given together with Paclitaxel and Trastuzumab (PT):

- Daily dosing of Everolimus 5mg plus PT (d_1)
- 2 Daily dosing of Everolimus 10mg plus PT (d_2)
- Weekly dosing of Everolimus 30mg plus PT (d_3)

Table :	Aggregated	data	of the	Everolimus	tria
---------	------------	------	--------	------------	------

Dose	d_1	<i>d</i> ₂	d ₃
Number of Patients assigned	6	17	10
Number of DLTs	3	6	7

We compare original CRM and CIBP (0.3) using the same prior parameters

Numerical Study

Setting by Wheeler et al. (2017).

- n = 40 patients; m = 6 doses; c = 1 cohort size; target $\gamma = 0.33$
- $\beta \sim \mathcal{N}(0, 1.34)$
- $a = \{0.5, 0.25, 0.10\}.$

Numerical Study

Setting by Wheeler et al. (2017).

- n = 40 patients; m = 6 doses; c = 1 cohort size; target $\gamma = 0.33$
- $\beta \sim \mathcal{N}(0, 1.34)$
- $a = \{0.5, 0.25, 0.10\}.$

We study the performance of designs in terms of (i) *Accuracy*

$$\mathcal{A} = 1 - m \frac{\sum_{i=1}^{m} (p_i - \gamma)^2 \pi_i}{\sum_{i=1}^{m} (p_i - \gamma)^2}$$

(*ii*) mean number of toxic responses (DLTs) and focus on the mean performance.

Scenarios

Comparators

We compare the performance of the proposed approach to

- EWOC
- TR design by Tighiouart et al. (2010)
- Toxicity-dependent feasibility bound (TDFB) by Wheeler et al. (2017)
- BLRM by Neuenschwander et al. (2008)

We use the same prior distribution as Neuenschwander et al. (2008).

BLRM

Modified allocation rule for the CRM

14 / 17

14 / 17

IDEAS

14 / 17

Modified allocation rule for the CRM

TIDEAS

BLRM

15 / 17

IDEAS

Pavel Mozgunov, Thomas Jaki (Lancaster University

15 / 17

IDEAS

Pavel Mozgunov, Thomas Jaki (Lancaster University

Modified allocation rule for the CRM

15 / 17

IDEAS

Pavel Mozgunov, Thomas Jaki (Lancaster University

Modified allocation rule for the CRM

Conclusions

The novel criterion requires **one additional parameter only**. The criterion incorporated into the one-parameter CRM method is found to

result in

- **Similar** accuracy, but **fewer** mean number of DLTS.
- **@** Greater accuracy, but similar mean number of DLTs.

(!) The new criterion allows to make model-based design **more ethical** as it does not lead to any decrease in accuracy.

Further work:

Generalisation to dose-combination and dose-schedule trials including the case of delayed toxicity responses.

- Aitchison, J. (1992) On criteria for measures of compositional difference. Mathematical Geology, 24, 365–379.
- Babb, J., Rogatko, A. and Zacks, S. (1998) Cancer phase I clinical trials: efficient dose escalation with overdose control. *Statistics in medicine*, **17**, 1103–1120.
- Neuenschwander, B., Branson, M. and Gsponer, T. (2008) Critical aspects of the Bayesian approach to phase I cancer trials. *Statistics in Medicine*, **27**, 2420–2439.
- O'Quigley, J., Pepe, M. and Fisher, L. (1990) Continual reassessment method: a practical design for phase 1 clinical trials in cancer. *Biometrics*, 33–48.
- Tighiouart, M., Rogatko, A. et al. (2010) Dose finding with escalation with overdose control (ewoc) in cancer clinical trials. *Statistical Science*, **25**, 217–226.
- Wheeler, G. M., Sweeting, M. J. and Mander, A. P. (2017) Toxicity-dependent feasibility bounds for the escalation with overdose control approach in phase i cancer trials. *Statistics in Medicine*.

Asymmetry parameter (II)

Pavel Mozgunov, Thomas Jaki (Lancaster University)

Comparators

We compare the performance of the proposed approach to

- **EWOC** design using fixed $\alpha = 0.25$
- **TR** design by Tighiouart et al. (2010) using $\alpha_2 = ... = \alpha_9 = 0.25$, $\alpha_n = \min(\alpha_{n-1} + 0.05, 0.50)$.
- Toxicity-dependent feasibility bound (TDFB) by Wheeler et al. (2017)

$$\alpha_{n+1} = \min\left(0.50, 0.25 + (0.50 - 0.25 \frac{n - 1 - \sum_{i=1}^{n} y_i}{12\frac{2}{3}}\right)$$

• **BLRM** by Neuenschwander et al. (2008) We use the same prior distribution as Neuenschwander et al. (2008).

