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Motivation (I)

Consider a small population sequential Phase II trial with two arms and

binary outcomes which aims to find the superior arm.

Assume that

10 outcomes observed for each arm

4 successes on 1st arm

6 successes on 2st arm

Q: To which arm a next patient should be assigned?

Keeping in mind that, we would like to

make a reliable recommendation (high statistical power)

maximize the proportion of the population on the superior arm

“Earn vs Learn“ trade-off
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Motivation (II)

1 Option 1. Earn

Assign a next patients to 2nd arm

Challenges:

Selection can lock in the suboptimal arm

Low statistical power by the end of the trial

2 Option 2. Learn

Assign a next patient to an arm about which we have the least

information (e.g. the Shannon information)

Challenges:

Unethical (low number of treated patients)
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Current approaches

Fixed randomization

Thompson Sampling (proportional to a probability being the best)

Low expected number of successes

Current belief (maximum point estimate)

Low statistical power, high variance of the expected number of success

Optimal multi-arm bandit (MAB) and the dynamic programming

Low statistical power
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Back to information measures

The Shannon information (entropy)

h(f ) = −
∫
R

f (z)logf (z)dz .

In the example above,

h(arm 1) = h(arm 2).

This information does not reflect our specific interest in the superior arm

It shows the amount of information needed to answer the question

What is the success probability?

Q: Can we quantify this interest in the information measure?
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Weighted information

Consider a twofold experiment:

(i) what is the probability of success (large n)

(ii) is the probability of success close to the target (small and moderate n)

A: The weighted Shannon information

hφ(f ) = −
∫
R
φ(z)f (z)logf (z)dz .

Due to ethical constraints we concentrate on the question (ii) alone and on

the corresponding measure of the information

hφ(f )− h(f )
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Methods

Consider the probability of success as a RV with Beta prior B(ν+ 1, β− ν+ 1).

After x successes in n trial → Beta posterior B(x + ν + 1, n − x + β − ν + 1).

α is the true probability of success

γ is the target probability (for instance, γ = 0.999)

Beta-form of the weight function

φn(p) = C (x , γ, n)pγn
κ

(1− p)(1−γ)nκ

Theorem

Let h(fn) and hφn(fn) be the standard and weighted differential entropies.

Then,

lim
n→∞

([
hφn(fn)− h(fn)

]
− 1

2

(
(α− γ)2

α(1− α)

)
n2κ−1 + ω

)
= 0
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Design

‘Plug-in‘ modal estimator of a success probability of the arm j

p̂nj =
xj + νj
nj + βj

, j = 1, . . . ,m

for

δ̂(κ)
nj =

(p̂nj − γ)2

p̂nj (1− p̂nj )
n2κ−1
j .

Arm selection algorithm:

1 Start from δ̂
(κ)
βi

, i = 1, . . . ,m

2 Observed ni and xi outcomes for the arm Ai , i = 1, . . . ,m

3 Arm Aj is selected if it satisfies

δ̂(κ)
nj = inf

i=1,...,m
δ̂(κ)
ni .

4 Repeat 2-3 until the total number of patients is reached.
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Illustration. Two arms trial

Consider the trial with m = 2 arms (α1 = 0.5 and α2 = 0.7), n = 75 patients

Prior : p̂ = (0.99, 0.99); β = (2, 2)

Alternative: Constrained rand. dynamic programming (Williamson et.al, 2016)
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Numerical study

We consider two trials with m = 4 treatments (Villar et.al, 2015)

Trial 1: N1 = 423, p = [0.3, 0.3, 0.3, 0.5]T

Trial 2: N2 = 80, p = [0.3, 0.4, 0.5, 0.6]T.

Hypothesis H0 : p0 ≥ pi for i = 1, 2, 3

with the family-wise error rate calculated at p0 = . . . = p3 = 0.3

Prior : p̂ = (0.99, 0.99, 0.99, 0.99); β = (5, 2, 2, 2)

We study:

the type-I error rate (α)

statistical power (1− η)

expected number of successes (ENS)

Comparators:

MAB approach based on the Gittins index

Fixed randomization
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Numerical study. Results

Trial 1

Method
H0 : p0 = p1 = p2 = p3 = 0.3 H1 : p0 = p1 = p2 = 0.3, p3 = 0.5

α p∗(s.e) ENS(s.e.) (1− η) p∗(s.e.) ENS (s.e.)

MAB 0.05 0.25 (0.18) 126.7 (9.4) 0.43 0.83 (0.10) 198.3 (13.7)

WE (κ = 0.55) 0.05 0.22 (0.20) 126.9 (9.4) 0.55 0.83 (0.18) 197.1 (17.8)

FR 0.05 0.25 (0.02) 126.9 (9.4) 0.82 0.25 (0.02) 147.9 (9.6)

WE (κ = 0.65) 0.05 0.23 (0.13) 126.9 (9.4) 0.87 0.74 (0.10) 189.3 (13.7)

Trial 2

Method
H0 : p0 = p1 = p2 = p3 = 0.3 H1 : p0 = 0.3, p1 = 0.4, p2 = 0.5, p3 = 0.6

α p∗(s.e) ENS(s.e.) (1− η) p∗(s.e.) ENS (s.e.)

MAB 0.00 0.25 (0.13) 24.0 (4.10) 0.00 0.49 (0.21) 41.6 (5.4)

WE (κ = 0.55) 0.01 0.20 (0.15) 24.0 (4.10) 0.11 0.50 (0.27) 40.7 (5.9)

FR 0.05 0.25 (0.04) 24.0 (4.10) 0.50 0.25 (0.04) 36.0 (4.3)

WE (κ = 0.65) 0.05 0.24 (0.07) 24.0 (4.05) 0.52 0.47 (0.21) 40.2 (4.8)
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Conclusion

Simple, intuitevely clear, can be computed by non-statisticians

Penalty parameter κ reflects the trade-off between ENS and Power

Performs better than currently used approaches

MAB FR

Power higher same

ENS same higher

Can be applied to any trial with the target γ ∈ (0, 1)

Theoretical result: the design is consistent

The criterion can be generalized for multinomial outcomes
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