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Immunotherapy in Phase I clinical trials

Phase I conventional paradigm: the more the better

Important exceptions: molecularly targeted agents (e.g. immunotherapy).

? Immune system can regulate/eliminate tumours

? Low toxicity profile

Example:

immune-checkpoint proteins blocker anti-programmed-death-receptor-1 (PD1)

Pembrolizumab

? None of the trials reached MTD

? Plateau found. Same toxicity/activity probability for 2 and 10 mg/kg

? FDA requested to focus on a lower dose level

P. Mozgunov, T.Jaki and X.Paoletti WDE-based approaches to dose-escalation 2 / 20



Immunotherapy in Phase I clinical trials

Phase I conventional paradigm: the more the better

Important exceptions: molecularly targeted agents (e.g. immunotherapy).

? Immune system can regulate/eliminate tumours

? Low toxicity profile

Example:

immune-checkpoint proteins blocker anti-programmed-death-receptor-1 (PD1)

Pembrolizumab

? None of the trials reached MTD

? Plateau found. Same toxicity/activity probability for 2 and 10 mg/kg

? FDA requested to focus on a lower dose level

P. Mozgunov, T.Jaki and X.Paoletti WDE-based approaches to dose-escalation 2 / 20



Combinations with immunotherapy

Immunotherapy is enough not efficacious in cancer treatment by itself

Current investigations:

? the added value of immune checkpoint blockers to backbone therapy

? the added value of a new drug to an immune checkpoint blocker.

One drug is administered at full dose while the other is escalated.

Objectives of the trial:

? To find the maximum tolerated combination (MTC)

? To detect clinically significant difference between the MTC and standard

therapy alone (required by EMA)

? To detect a possible dose effect in the combination
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Current approach

Current design: one parameter CRM design for single agent trial

Advantages:

? Ability to find MTC with high probability

? Well-known properties

Disadvantages:

? Strong monotonicity assumption

? No possibility of a plateau detection

? Does not allow a statistical comparison of toxicities
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Proposals

Flexible model:

? Emax model

? A plateau in a dose-toxicity relation

? Ability to model the toxicity probability on the single agent alone

independently

Randomization between a control and an investigation arm

? control is standard therapy

? prevents a selection bias

? allows statistical comparison of the toxicity

? ethical
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Bayesian CRM

Combination of A (fixed) and B: d̃0 = {a, b0}, d̃1 = {a, b1}, . . . , d̃m = {a, bm}

Model pi = ψ(di , θ); di is a unit-less amount of drug

θ is a vector of parameters

Given binary outcomes, the CRM updates the posterior fj(θ)

fj(θ) =
fj−1(θ)L(d , y , θ)∫

Rd fj−1(u)L(d , y , u)du
(1)

The posterior mean (!)

p̂
(j)
k = E(ψ(dk , a)|Yj) =

∫
Rd

ψ(dk , u)fj(u)du (2)

Main debate: choice of model ψ(dk , a)
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Emax model

ψ(di ,E0,Emax , λ,ED50) ≡ ψ(di , θ) = E0 +
dλ
i Emax

dλ
i + EDλ

50

(3)

? E0 is the probability of toxicity on the control

? Emax + E0 is the maximum probability of toxicity

? ED50 is the combination which produces E0 + Emax

2

? λ ≥ 0 is the slope factor

Skeleton construction:

di = ÊD
(0)

50 ×

(
p̂i (0)− Ê

(0)
0

Ê
(0)
max + Ê

(0)
0 − p̂i (0)

) 1

λ̂(0)

By definition, p̂0(0) ≡ Ê
(0)
0 → di = 0
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Randomization

Assignment cohort-by-cohort

c = c1 + c2

? c1 be the number of patients assigned to the current best combination

? c2 be the number of patients assigned to the control, d0.

For instance, taking c1 = 3 and c2 = 1, one will end up with 25% of the total

sample size being assigned to the control.

CRM with randomization results in the majority of patients on two

combinations: control and MTC.
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Simulations setting

? Sample size n = 48

? m = 7 combinations

? Target probability γ = 0.25;

? Clinically significant difference τ = 0.05

? Confidence level α = 0.9

? c1 = 3, c2 = 1 → 25% on the control treatment.
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Characteristics

(i) Proportion of correct recommendations

(ii) Proportion of times the clinically significant difference is found

P ≡ P (P (pMTC − pcontrol ≥ τ) > α) (4)

(iii) Goodness of fit measure

NMSE =
1

N

N∑
j=1

√∑n
i=1(pi − ψ(di , θ̂(j)))2∑n

i=1(pi − p̂opti )2
(5)
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Prior and comparators

Skeleton

P0 = [0.08, 0.25, 0.35, 0.45, 0.55, 0.65, 0.70, 0.75]T

Information to construct prior distributions for model parameters:

(i) Control: upper bound of the 95% credibility interval is 0.25.

(ii) Prior MTC: upper bound of the 95% credibility interval is 0.80.

E0 ∼ B(0.8, 10−0.8); λ ∼ Γ(1, 1); Emax |E0 ∼ U[0, 1−E0]; ED50 ∼ Γ(0.4, 0.4);
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Comparators

(P1) One-parameter power model (no randomization):

ψ(di , z) = dz
i .

(L2) Two-parameter logistic models

ψ(di , β1, β2) =
exp(log(β1) + β2di )

1 + exp(log(β1) + β2di )

with (R) and without randomization.
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Scenarios
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Figure : Considered dose-toxicity shapes. The MTC is marked by a triangle.
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Results (I)

d0 d1 d2 d3 d4 d5 d6 d7 TR

Sc 1 0.08 0.10 0.12 0.15 0.25 0.40 0.45 0.47

Emax(R) 0.0 2.1 8.7 22.9 45.1 13.6 3.8 3.7 19.1

L2(R) 0.0 1.8 8.3 26.5 44.6 13.8 3.1 2.0 19.2

L2 0.4 0.1 3.3 24.9 52.6 16.4 2.1 1.3 25.1

P1 0.0 1.0 4.2 16.5 51.4 20.4 5.5 1.0 29.2

Sc 2 0.08 0.09 0.095 0.10 0.10 0.11 0.11 0.11

Emax(R) 0.0 0.3 0.5 0.9 0.5 1.6 1.9 94.4 10.2

L2(R) 0.0 0.62 0.75 1.50 3.00 2.13 1.75 90.2 10.6

L2 0.3 0.1 0.3 0.5 1.8 1.0 0.5 95.6 11.4

P1 0.0 0.0 0.0 0.0 0.0 0.6 0.8 98.7 11.3
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Results (II)

d0 d1 d2 d3 d4 d5 d6 d7 TR

Scenario 4 0.08 0.25 0.50 0.51 0.52 0.52 0.53 0.54

Emax(R) 5.1 82.1 11.5 0.9 0.3 0.1 0.0 0.0 24.4

L2(R) 4.1 86.4 8.4 0.9 0.3 0.0 0.0 0.0 24.6

L2 20.9 75.0 4.0 0.1 0.0 0.0 0.0 0.0 26.9

P1 20.2 71.7 7.4 0.7 0.0 0.0 0.0 0.0 31.0

Scenario 5 0.08 0.09 0.09 0.10 0.5 0.5 0.5 0.5

Emax(R) 0.0 1.9 7.7 57.1 31.2 1.6 0.1 0.4 18.8

L2(R) 0.0 1.5 9.5 56.4 30.2 1.4 0.8 0.3 18.2

L2 0.1 0.1 1.4 62.7 35.5 0.2 0.1 0.0 25.1

P1 0.0 0.0 0.0 54.9 36.4 7.0 1.2 0.5 33.2
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Results (III)

Sc 1 Sc 2 Sc 3 Sc 4 Sc 5 Sc 6

E(R)

P 74.7% 16.3% 66.7% 71.5% 67.9% 24.2%

NMSE 1.7 2.0 2.2 3.5 3.1 1.5

L2(R)

P 71.8% 14.4% 59.7% 64.1% 74.9% 20.9%

NMSE 1.9 2.2 7.2 4.4 3.4 1.5

L2
P 61.5% 15.7% 50.1% 50.2% 64.7 % 18.1%

NMSE 2.0 2.5 7.7 5.8 3.6 1.6

P1
P 99.9% 93.7% 99.7% 99.7% 99.4% 95.3%

NMSE 2.1 2.6 7.8 6.1 3.8 2.1
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Fitted curves

0 1 2 3 4 5 6 7

0
.0

0
.3

Scenario 1. Emax (R)

 

T
o
x
ic

it
y

0 1 2 3 4 5 6 7

0
.0

0
.3

Scenario 1. Logit (R)

 

T
o
x
ic

it
y

0 1 2 3 4 5 6 7

0
.0

0
.3

Scenario 1. Logit

 

T
o
x
ic

it
y

0 1 2 3 4 5 6 7

0
.0

0
.3

Scenario 4. Emax (R)

 

T
o
x
ic

it
y

0 1 2 3 4 5 6 7

0
.0

0
.3

Scenario 4. Logit (R)

 

T
o
x
ic

it
y

0 1 2 3 4 5 6 7

0
.0

0
.3

Scenario 4. Logit

 

T
o
x
ic

it
y

0 1 2 3 4 5 6 7

0
.0

0
.3

Scenario 6. Emax (R)

combination

T
o
x
ic

it
y

0 1 2 3 4 5 6 7

0
.0

0
.3

Scenario 6. Logit (R)

combination

T
o
x
ic

it
y

0 1 2 3 4 5 6 7
0
.0

0
.3

Scenario 6. Logit

combination

T
o
x
ic

it
y

Figure : 1000 fitted curves (black lines) using the Emax model, Logit − 2 model with

randomization (R) and Logit − 2 model without randomization and n = 48 patients

in scenarios 1, 4 and 6. The true underlying dose-toxicity relation is plotted by red

line.
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Sensitivity analysis

Prior distributions:

E0 ∼ B(0, 8, 10−0.8), λ ∼ Γ(c1, c2), Emax |E0 ∼ U[0, 1−E0], ED50 ∼ Γ(c3, c4).

? Recommendation: An informative for λ and an uninformative for ED50

Randomization proportion

? Recommendation: 20%-25% on the control arm
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Conclusions

? Randomization and Emax model allow to identify clinically significant

differences with higher probability than alternatives.

? The cost of randomization: a small reduction in the proportion of

correct recommendations in some scenarios.

? The randomization helps to overcome problems with fitting

? This design should be considered if not only MTC identification is of

interest
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Further work

? Large variance of number of patients on the MTC.

? Further investigation on the fitting problem

? Phase II trials: a statistical comparison of the optimal combination and

control effectivenesses
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