Randomized dose-escalation design for drug combination cancer trials with immunotherapy

Pavel Mozgunov, Thomas Jaki, Xavier Paoletti

Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics and Statistics, Lancaster University, UK and INSERM, Institut Gustave Roussy, Villejuif, France

Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 633567.

Immunotherapy in Phase I clinical trials

Phase I conventional paradigm: the more the better

Important exceptions: molecularly targeted agents (e.g. immunotherapy).

- * Immune system can regulate/eliminate tumours
- \star Low toxicity profile

Example:

immune-checkpoint proteins blocker anti-programmed-death-receptor-1 (PD1) Pembrolizumab

- * None of the trials reached MTD
- * Plateau found. Same toxicity/activity probability for 2 and 10 mg/kg
- * FDA requested to focus on a lower dose level

Immunotherapy in Phase I clinical trials

Phase I conventional paradigm: the more the better

Important exceptions: molecularly targeted agents (e.g. immunotherapy).

- * Immune system can regulate/eliminate tumours
- * Low toxicity profile

Example:

immune-checkpoint proteins blocker anti-programmed-death-receptor-1 (PD1) Pembrolizumab

- $\star\,$ None of the trials reached MTD
- $\star\,$ Plateau found. Same toxicity/activity probability for 2 and 10 mg/kg
- $\star\,$ FDA requested to focus on a lower dose level

Combinations with immunotherapy

Immunotherapy is enough not efficacious in cancer treatment by itself

Current investigations:

- $\star\,$ the added value of immune checkpoint blockers to backbone therapy
- \star the added value of a new drug to an immune checkpoint blocker.

One drug is administered at **full dose** while the other is **escalated**.

Objectives of the trial:

- * To find the maximum tolerated combination (MTC)
- To detect clinically significant difference between the MTC and standard therapy alone (required by EMA)
- * To detect a possible dose effect in the combination

Combinations with immunotherapy

Immunotherapy is enough not efficacious in cancer treatment by itself

Current investigations:

- $\star\,$ the added value of immune checkpoint blockers to backbone therapy
- \star the added value of a new drug to an immune checkpoint blocker.

One drug is administered at **full dose** while the other is **escalated**.

Objectives of the trial:

- \star To find the maximum tolerated combination (MTC)
- To detect clinically significant difference between the MTC and standard therapy alone (required by EMA)
- * To detect a possible dose effect in the combination

Combinations with immunotherapy

Immunotherapy is enough not efficacious in cancer treatment by itself

Current investigations:

- $\star\,$ the added value of immune checkpoint blockers to backbone therapy
- \star the added value of a new drug to an immune checkpoint blocker.

One drug is administered at **full dose** while the other is **escalated**.

Objectives of the trial:

- \star To find the maximum tolerated combination (MTC)
- * To detect clinically significant difference between the MTC and standard therapy alone (required by EMA)
- $\star\,$ To detect a possible dose effect in the combination

Current approach

Current design: one parameter CRM design for single agent trial

Advantages:

- * Ability to find MTC with high probability
- * Well-known properties

Disadvantages:

- * Strong monotonicity assumption
- * No possibility of a plateau detection
- * Does not allow a statistical comparison of toxicities

Current approach

Current design: one parameter CRM design for single agent trial

Advantages:

- \star Ability to find MTC with high probability
- * Well-known properties

Disadvantages:

- * Strong monotonicity assumption
- * No possibility of a plateau detection
- * Does not allow a statistical comparison of toxicities

Current design: one parameter CRM design for single agent trial

Advantages:

- $\star\,$ Ability to find MTC with high probability
- * Well-known properties

Disadvantages:

- $\star\,$ Strong monotonicity assumption
- \star No possibility of a plateau detection
- $\star\,$ Does not allow a statistical comparison of toxicities

Proposals

Flexible model:

- $\star E_{max}$ model
- $\star\,$ A plateau in a dose-toxicity relation
- * Ability to model the toxicity probability on the single agent alone independently

Randomization between a control and an investigation arm

- control is standard therapy
- prevents a selection bias
- * allows statistical comparison of the toxicity
- * ethical

Proposals

Flexible model:

- $\star E_{max}$ model
- $\star\,$ A plateau in a dose-toxicity relation
- * Ability to model the toxicity probability on the single agent alone independently

Randomization between a control and an investigation arm

- \star control is standard therapy
- \star prevents a selection bias
- $\star\,$ allows statistical comparison of the toxicity
- \star ethical

Bayesian CRM

Combination of A (fixed) and B: $\tilde{d_0} = \{a, b_0\}, \tilde{d_1} = \{a, b_1\}, \dots, \tilde{d_m} = \{a, b_m\}$

Given binary outcomes, the CRM updates the posterior $f_j(\theta)$

$$f_j(\theta) = \frac{f_{j-1}(\theta)\mathcal{L}(d, y, \theta)}{\int_{\mathbb{R}^d} f_{j-1}(u)\mathcal{L}(d, y, u) \mathrm{d}u}$$

The posterior mean (!)

$$\hat{p}_k^{(j)} = \mathbb{E}(\psi(d_k, a) | \mathbb{Y}_j) = \int_{\mathbb{R}^d} \psi(d_k, u) f_j(u) \mathrm{d}u$$

Main debate: choice of model $\psi(d_k, a)$

Bayesian CRM

Combination of A (fixed) and B: $\tilde{d_0} = \{a, b_0\}, \tilde{d_1} = \{a, b_1\}, \dots, \tilde{d_m} = \{a, b_m\}$

Given binary outcomes, the CRM updates the posterior $f_j(\theta)$

$$f_{j}(\theta) = \frac{f_{j-1}(\theta)\mathcal{L}(d, y, \theta)}{\int_{\mathbb{R}^{d}} f_{j-1}(u)\mathcal{L}(d, y, u) \mathrm{d}u}$$
(1)

The posterior mean (!)

$$\hat{p}_{k}^{(j)} = \mathbb{E}(\psi(d_{k}, \boldsymbol{a}) | \mathbb{Y}_{j}) = \int_{\mathbb{R}^{d}} \psi(d_{k}, \boldsymbol{u}) f_{j}(\boldsymbol{u}) \mathrm{d}\boldsymbol{u}$$
(2)

Main debate: choice of model $\psi(d_k, a)$

Bayesian CRM

Combination of A (fixed) and B: $\tilde{d_0} = \{a, b_0\}, \tilde{d_1} = \{a, b_1\}, \dots, \tilde{d_m} = \{a, b_m\}$

Given binary outcomes, the CRM updates the posterior $f_j(\theta)$

$$f_{j}(\theta) = \frac{f_{j-1}(\theta)\mathcal{L}(d, y, \theta)}{\int_{\mathbb{R}^{d}} f_{j-1}(u)\mathcal{L}(d, y, u) \mathrm{d}u}$$
(1)

The posterior mean (!)

$$\hat{p}_{k}^{(j)} = \mathbb{E}(\psi(d_{k}, \boldsymbol{a}) | \mathbb{Y}_{j}) = \int_{\mathbb{R}^{d}} \psi(d_{k}, \boldsymbol{u}) f_{j}(\boldsymbol{u}) \mathrm{d}\boldsymbol{u}$$
(2)

Main debate: choice of model $\psi(d_k, a)$

E_{max} model

$$\psi(d_i, E_0, E_{max}, \lambda, ED_{50}) \equiv \psi(d_i, \theta) = E_0 + \frac{d_i^{\lambda} E_{max}}{d_i^{\lambda} + ED_{50}^{\lambda}}$$
(3)

- \star *E*₀ is the probability of toxicity on the control
- * $E_{max} + E_0$ is the maximum probability of toxicity
- * ED_{50} is the combination which produces $E_0 + \frac{E_{max}}{2}$
- $\star \ \lambda \geq$ 0 is the slope factor

Skeleton construction:

$$d_{i} = \hat{ED}_{50}^{(0)} \times \left(\frac{\hat{p}_{i}(0) - \hat{E}_{0}^{(0)}}{\hat{E}_{max}^{(0)} + \hat{E}_{0}^{(0)} - \hat{p}_{i}(0)}\right)^{\frac{1}{\tilde{\chi}^{(0)}}}$$

INE AS

E_{max} model

$$\psi(d_i, E_0, E_{max}, \lambda, ED_{50}) \equiv \psi(d_i, \theta) = E_0 + \frac{d_i^{\lambda} E_{max}}{d_i^{\lambda} + ED_{50}^{\lambda}}$$
(3)

- \star *E*₀ is the probability of toxicity on the control
- * $E_{max} + E_0$ is the maximum probability of toxicity
- * ED_{50} is the combination which produces $E_0 + \frac{E_{max}}{2}$
- $\star \ \lambda \geq$ 0 is the slope factor

Skeleton construction:

$$d_i = \hat{ED}_{50}^{(0)} imes \left(rac{\hat{p}_i(0) - \hat{E}_0^{(0)}}{\hat{E}_{max}^{(0)} + \hat{E}_0^{(0)} - \hat{p}_i(0)}
ight)^{rac{1}{\hat{\chi}^{(0)}}}$$

E_{max} model

$$\psi(d_i, E_0, E_{max}, \lambda, ED_{50}) \equiv \psi(d_i, \theta) = E_0 + \frac{d_i^{\lambda} E_{max}}{d_i^{\lambda} + ED_{50}^{\lambda}}$$
(3)

- \star *E*₀ is the probability of toxicity on the control
- * $E_{max} + E_0$ is the maximum probability of toxicity
- * ED_{50} is the combination which produces $E_0 + \frac{E_{max}}{2}$
- $\star \ \lambda \geq$ 0 is the slope factor

Skeleton construction:

$$d_i = \hat{ED}_{50}^{(0)} imes \left(rac{\hat{p}_i(0) - \hat{E}_0^{(0)}}{\hat{E}_{max}^{(0)} + \hat{E}_0^{(0)} - \hat{p}_i(0)}
ight)^{rac{1}{\hat{\chi}^{(0)}}}$$

By definition,
$$\hat{p}_0(0) \equiv \hat{E}_0^{(0)} \rightarrow d_i = 0$$

INE AS

Randomization

Assignment cohort-by-cohort

 $c = c_1 + c_2$

* c_1 be the number of patients assigned to the current best combination * c_2 be the number of patients assigned to the control, d_0 .

For instance, taking $c_1 = 3$ and $c_2 = 1$, one will end up with 25% of the total sample size being assigned to the control.

CRM with randomization results in the majority of patients on **two** combinations: control and MTC.

Randomization

Assignment cohort-by-cohort

 $c = c_1 + c_2$

* c_1 be the number of patients assigned to the current best combination * c_2 be the number of patients assigned to the control, d_0 .

For instance, taking $c_1 = 3$ and $c_2 = 1$, one will end up with 25% of the total sample size being assigned to the control.

CRM with randomization results in the majority of patients on **two** combinations: control and MTC.

Randomization

Assignment cohort-by-cohort

 $c = c_1 + c_2$

* c_1 be the number of patients assigned to the current best combination * c_2 be the number of patients assigned to the control, d_0 .

For instance, taking $c_1 = 3$ and $c_2 = 1$, one will end up with 25% of the total sample size being assigned to the control.

CRM with randomization results in the majority of patients on **two** combinations: control and MTC.

Simulations setting

- * Sample size n = 48
- \star m = 7 combinations
- $\star\,$ Target probability $\gamma=$ 0.25;
- $\star\,$ Clinically significant difference $\tau=0.05$
- $\star\,$ Confidence level $\alpha=$ 0.9
- $\star~c_1=$ 3, $c_2=1 \rightarrow 25\%$ on the control treatment.

Characteristics

(i) Proportion of correct recommendations

(ii) Proportion of times the clinically significant difference is found

$$\mathcal{P} \equiv \mathbb{P}\left(\mathbb{P}\left(p_{MTC} - p_{control} \geq \tau\right) > \alpha\right) \tag{4}$$

(iii) Goodness of fit measure

$$NMSE = \frac{1}{N} \sum_{j=1}^{N} \sqrt{\frac{\sum_{i=1}^{n} (p_{i} - \psi(d_{i}, \hat{\theta}^{(j)}))^{2}}{\sum_{i=1}^{n} (p_{i} - \hat{p}_{i}^{opt})^{2}}}$$

(5)

Prior and comparators

Skeleton

 $\mathbb{P}_0 = [\boldsymbol{0.08}, 0.25, 0.35, 0.45, 0.55, 0.65, 0.70, 0.75]^{\mathrm{T}}$

Information to construct prior distributions for model parameters:(i) Control: upper bound of the 95% credibility interval is 0.25.(ii) Prior MTC: upper bound of the 95% credibility interval is 0.80.

 $E_0 \sim \mathbb{B}(0.8, 10-0.8); \ \lambda \sim \Gamma(1, 1); \ \ E_{max}|E_0 \sim \mathbb{U}[0, 1-E_0]; \ ED_{50} \sim \Gamma(0.4, 0.4);$

Comparators

(P1) **One-parameter** power model (no randomization):

 $\psi(d_i,z)=d_i^z.$

(L2) Two-parameter logistic models

$$\psi(d_i, \beta_1, \beta_2) = rac{\exp(\log(\beta_1) + \beta_2 d_i)}{1 + \exp(\log(\beta_1) + \beta_2 d_i)}$$

with (R) and without randomization.

Scenarios

P. Mozgunov, T.Jaki and X.Paoletti

WDE-based approaches to dose-escalation

Results (I)

	d_0	d_1	<i>d</i> ₂	d ₃	d_4	d_5	d_6	<i>d</i> ₇	TR
Sc 1	0.08	0.10	0.12	0.15	0.25	0.40	0.45	0.47	
$E_{max}(R)$	0.0	2.1	8.7	22.9	45.1	13.6	3.8	3.7	19.1
L2(R)	0.0	1.8	8.3	26.5	44.6	13.8	3.1	2.0	19.2
L2	0.4	0.1	3.3	24.9	52.6	16.4	2.1	1.3	25.1
P1	0.0	1.0	4.2	16.5	51.4	20.4	5.5	1.0	29.2
Sc 2	0.08	0.09	0.095	0.10	0.10	0.11	0.11	0.11	
$E_{max}(R)$	0.0	0.3	0.5	0.9	0.5	1.6	1.9	94.4	10.2
L2(R)	0.0	0.62	0.75	1.50	3.00	2.13	1.75	90.2	10.6
L2	0.3	0.1	0.3	0.5	1.8	1.0	0.5	95.6	11.4
P1	0.0	0.0	0.0	0.0	0.0	0.6	0.8	98.7	11.3

Results (II)

	d_0	d_1	<i>d</i> ₂	<i>d</i> ₃	d_4	d_5	d_6	<i>d</i> ₇	TR
Scenario 4	0.08	0.25	0.50	0.51	0.52	0.52	0.53	0.54	
$E_{max}(R)$	5.1	82.1	11.5	0.9	0.3	0.1	0.0	0.0	24.4
L2(R)	4.1	86.4	8.4	0.9	0.3	0.0	0.0	0.0	24.6
L2	20.9	75.0	4.0	0.1	0.0	0.0	0.0	0.0	26.9
P1	20.2	71.7	7.4	0.7	0.0	0.0	0.0	0.0	31.0
Scenario 5	0.08	0.09	0.09	0.10	0.5	0.5	0.5	0.5	
$E_{max}(R)$	0.0	1.9	7.7	57.1	31.2	1.6	0.1	0.4	18.8
L2(R)	0.0	1.5	9.5	56.4	30.2	1.4	0.8	0.3	18.2
L2	0.1	0.1	1.4	62.7	35.5	0.2	0.1	0.0	25.1
P1	0.0	0.0	0.0	54.9	36.4	7.0	1.2	0.5	33.2

Results (III)

		Sc 1	Sc 2	Sc 3	Sc 4	Sc 5	Sc 6
$E_{(R)}$	\mathcal{P}	74.7%	16.3%	66.7%	71.5%	67.9%	24.2%
	NMSE	1.7	2.0	2.2	3.5	3.1	1.5
L2 _(R)	\mathcal{P}	71.8%	14.4%	59.7%	64.1%	74.9%	20.9%
	NMSE	1.9	2.2	7.2	4.4	3.4	1.5
L2	\mathcal{P}	61.5%	15.7%	50.1%	50.2%	64.7 %	18.1%
	NMSE	2.0	2.5	7.7	5.8	3.6	1.6
P1	\mathcal{P}	99.9%	93.7%	99.7%	99.7%	99.4%	95.3%
	NMSE	2.1	2.6	7.8	6.1	3.8	2.1

Fitted curves

Scenario 1. Emax (R) Scenario 1. Logit (R) Scenario 1. Logit Toxicity Toxicity Toxicity 0.3 0.3 0.3 0.0 0.0 0.0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 2 3 4 5 6 7 Scenario 4. Logit (R) Scenario 4. Logit Scenario 4. Emax (R) Toxicity Toxicity Toxicity 0.3 0.3 0.3 0.0 0.0 0.0 3 5 6 7 2 3 5 6 7 2 0 1 2 4 0 1 4 0 1 3 4 5 6 7 Scenario 6. Emax (R) Scenario 6. Logit (R) Scenario 6. Logit Toxicity Toxicity Toxicity 0.3 0.3 0.3 0.0 0.0 0.0 5 7 5 2 3 4 6 2 3 6 7 0 2 3 5 6 7 4 combination combination combination

P. Mozgunov, T.Jaki and X.Paoletti

WDE-based approaches to dose-escalation

17 / 20

Sensitivity analysis

Prior distributions:

 $E_0 \sim \mathbb{B}(0, 8, 10 - 0.8), \ \lambda \sim \Gamma(c_1, c_2), \ E_{max}|E_0 \sim \mathbb{U}[0, 1 - E_0], \ ED_{50} \sim \Gamma(c_3, c_4).$

 \star Recommendation: An informative for λ and an uninformative for ED_{50}

Randomization proportion

 \star Recommendation: 20%-25% on the control arm

Conclusions

- * Randomization and E_{max} model allow to identify clinically significant differences with higher probability than alternatives.
- * The cost of randomization: **a small reduction** in the proportion of correct recommendations in some scenarios.
- $\star\,$ The randomization helps to overcome problems with fitting
- This design should be considered if not only MTC identification is of interest

Further work

- $\star\,$ Large variance of number of patients on the MTC.
- $\star\,$ Further investigation on the fitting problem
- * Phase II trials: a statistical comparison of the optimal combination and control effectivenesses

