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Motivation 

• Characterizing the dose-response relationship is one 
of the major tasks in drug development  
• Dedicated (exploratory) dose-finding studies (Ph II) 

• Ph III studies sometimes study more than 1 or 2 active doses 

• Subgroup identification techniques are traditionally 
designed for trials comparing treatment and control 
• How to apply in situations with multiple different treatment groups? 

Pool active doses, perform subgroup analyses for each dose, ... 

• Additional challenge: dose-response models often non-linear 

• More systematic approach 
• Adjust for dose using a dose-response model 

• Assume that dose-response model parameters are different for 
different subgroups/baseline covariates 
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Emax function 

• Consider commonly used Emax function 

 

𝐸0 +  𝐸𝑚𝑎𝑥

𝑑𝑜𝑠𝑒

𝐸𝐷50 +  𝑑𝑜𝑠𝑒
 

 

• Dose-response subgroup analysis setting 

 

𝐸0(𝒙) + 𝐸𝑚𝑎𝑥(𝒙)
𝑑𝑜𝑠𝑒

𝐸𝐷50(𝒙) +  𝑑𝑜𝑠𝑒
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Covariates on E0: 

Prognostic covariates 

(modify response 

independent of treatment) 

Covariates on Emax or ED50: 

Predictive covariates (modify 

response to treatment) 



Emax subgroup examples 
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𝐸𝑚𝑎𝑥 subgroups 𝐸𝐷50 subgroups 



Recursive partitioning methods are a popular approach to subgroup 

identification: SIDES (Lipkovich et al., 2011), Virtual Twins (Foster et al. 

2011), Guide (Loh et al., 2015),.... 

• Able to handle interactions between covariates 

• Choice of cut-off often part of the method 

Attractive in the dose-finding context: model-based recursive 

partitioning (MOB) (Zeileis et al., 2008): 

• Not specifically designed for subgroup identification but has been used in the 

two-arm setting (Seibold and Hothorn, 2016) 

• RP method, that fits a parametric model in each node and splits based on 

covariate effects on the parameters of the model 

• Separate model in each resulting terminal node 
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Recursive partitioning for subgroup 

identification 



Model: 𝑴 𝒀, 𝒁 , 𝝑  

• 𝑌: response, 𝑍: other covariates (e.g treatment variables, additional baseline 

covariates,...) 

• 𝝑: parameter vector  

Partitioning variables: 𝑋1 , … , 𝑋𝐾  

• Typically baseline covariates, for which we suspect interactions with the treatment 

•  Used to partition the data and fit a segmented model (if this improves model fit) 

Algorithm (at each node) : 

1. Fit the model by minimizing objective function (log-likelihood, RSS,...) 

2. For each partitioning variable 𝑋1 , … , 𝑋𝐾  test for instability of the parameter estimates 

3. Choose the variable 𝑋𝑗  associated with highest instability for splitting, if (multiplicity-

adjusted) p-value for instability test is below α 

4. Choose binary split over 𝑋𝑗 , which minimizes objective function in the two daughter 

nodes 
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Mob algorithm 

Short overview 



Emax model (for normally distributed data) in this framework 

𝑴 𝒀, 𝑫 , 𝝑 ∶  𝒀𝒊~𝑵(𝑬𝟎 +  𝑬𝒎𝒂𝒙
𝑫𝒊

𝑬𝑫𝟓𝟎+𝑫𝒊
, σ𝟐), i=1,...,n  

• 𝝑 = (𝐸0, 𝐸𝐷50, 𝐸𝑚𝑎𝑥) 

• Objective function ᴪ: RSS 

• For subgroup analyses we would mostly be interested in covariate effects on 
𝐸𝐷50 and 𝐸𝑚𝑎𝑥               algorithm allows restriction to specific parameters 

• Algorithm can be implemented in partykit package with a custom fitting function 
(e.g. Emax) 

Main research questions: 

• Does fitting non-linear models on partitioned data improve model fit? 

• Is the algorithm able to detect the correct covariate-treatment 
interactions reliably? 

• Can estimation of quantities of interest (treatment effects, MED) be 
improved over a non-partitioned model? 

 
7 

Mob applied to dose-finding trials 



• Simulate trial based on study evaluating glycopyrronium bromide in COPD patients (clinicaltrials.gov: 

NCT00501852) :  

– Emax paramaters     E0 = 1.2, Emax = 0.17, ED50 = 18 

– 5 dose levels: 0 (placebo), 12.5, 25, 50, 100 

– n = 250 (50 patients on each dose level) 

– σ = 0.12 

• Baseline (partitioning) covariates 𝑿𝟏, … , 𝑿𝟏𝟎 iid. N(0, 1) 

5 Simulation scenarios: 
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Simulation setup 

Case  E0 Emax ED50 

1 – Null 1.2 0.17 18 

2 – E0 1.2 + 0.1I1 + 0.1I3 0.17 18 

3 –Emax 1.2  0.17 – 0.17 * I1 + 0.17 * I2 18 

4 –ED50  1.2  0.17 18 * 0.2^I1 * 5^I2 

5 – E0 & Emax & ED50 1.2 + 0.1I1 + 0.1I3 
0.17 + 0.17 * I1 * I2 – 0.17 * 

(1 – I1) * (1 – I2) 
18 * 0.2^I1 

where Ii is defined as Ii = I(xi > 0) 



Run mob on 5000 simulated trials and assess composition of 

trees 

• Frequency of splits over x1, x2, x3, which are either 

prognostic, predictive or noise (depending on the case) 

• Frequency of a trivial tree, e.g. no splits 

• Compare effect of restricted splitting (only on 𝐸𝐷50 and 

𝐸𝑚𝑎𝑥) and unrestricted splitting (on all parameters) 

• Here: α = 0.1 
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Are correct covariate effects detected? 
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Simulation results: Identification of 

correct covariates 

 



• Mean squared error of estimated individual treatment effect 

• Estimate patient-specific treatment effects across dose range  

• Average the MSE of predictions over all doses, patients and simulations 

• Estimation error of individual minimum effective dose (MED) 

• Estimate patient-specific MED 

• Check if this estimate lies in an interval around the correct estimate 

 

• Also compare the non-linear Emax model to linear models fit within the 

mob algorithm 

• Results shown here only for splitting restricted to ED50 and Emax 
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Estimating quantities of interest 

Is there an improvement over estimation with the global model? 
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Simulation results: Estimation 

Black line:  

global Emax model 

Treatment effect 

MED 



• Model-based recursive partitioning can be used to perform 

exploratory subgroup analyses for trials with multiple doses 

– able to detect covariate effects on specific parameters of the model, implicitly 

handling interactions between covariates and choosing suitable cutoffs 

– Multiplicity control to control the probability of a false positive 

– improves individual estimation of treatment effects and MED, if covariate 

effects are present over non-partitioned models 

– Parameter restriction can be used to distinguish prognostic and predictive 

covariates 

• Presented methodology can be easily implemented using 

the algorithms in the partykit package for R. 
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Conclusions 
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