A Bayesian decision-theoretic approach to incorporating pre-clinical information into phase I trials

Haiyan Zheng, Lisa V. Hampson

Medical and Pharmaceutical Statistics Research Unit Department of Mathematics and Statistics, Lancaster University

PSI Translational Statistics Meeting 30th March 2017

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 633567. (IDEAS - http://www.ideas-itm.eu/)

Dose escalations

Consider:

- $\bullet\,$ First-in-man studies \rightarrow limited knowledge about the toxicity to humans
- Binary endpoint: dose-limiting toxicity (DLT) versus no-DLT
- Doses available: d_1, \ldots, d_J

Aim:

- $\bullet\,$ to estimate the TD $\pi,$ the dose associated with risk of DLT at level $\pi\,$
- Commonly, $\pi \in (0.20, 0.35)$ for oncology trials

4 3 5 4 3 5

Bayesian model-based designs

Existing approaches:

- CRM
- BLRM
- EWOC

Figure : Modelling the dose-toxicity relationship.

Key features:

- Probabilistic inference about $p(d) \implies$ dose-escalation decisions
- Adopt uninformative, operational priors
- Incorporating pre-clinical information? OFTEN INFORMALLY
- Challenges?

ヨト・モヨ

Commensurability issues

H Zheng, LV Hampson

Incorporating pre-clinical info

PSI Translational Stats 4 / 25

To establish a formal incorporation of pre-clinical info into phase I trials

- represent the information in a prior for parameters of the dose-toxicity model
- discount it quickly if a prior-data conflict emerges anytime during the trial

Problem formulation

- Dose-toxicity model: $\log \left\{ \frac{p(d)}{1-p(d)} \right\} = \theta_1 + \exp(\theta_2) \log d$
- Bivariate normal prior for $\boldsymbol{\theta} = (\theta_1, \theta_2)$
 - operational prior
 - informative prior, formulated using pre-clinical data
 - mixture prior

$$f(\theta) = \omega \times \underbrace{g(\theta)}_{\text{pre-clinical data}} + (1 - \omega) \times \underbrace{h(\theta)}_{\text{operational prior}},$$

Q1: How to derive $g(\theta)$ with pre-clinical toxicology information? Q2: How to quantify the mixture weight ω ?

きょうきょう

On deriving the $g(\theta)$

Available pre-clinical information \rightarrow informative component $g(\theta)$:

- Summarise pre-clinical information as pseudo-data on the lowest and highest doses d_{-1} and d_0
- **2** This specifies **independent beta distributions** for $p(d_{-1})$ and $p(d_0)$
- **3** Given logit $\{p(d)\} = \theta_1 + \exp(\theta_2) \log d$, derive the **prior distributions** for $p(d_j)$ and their 2.5th, 50th and 97.5th percentiles
- Find the bivariate normal prior for $\theta = (\theta_1, \theta_2)$, which approximately agrees with the exact summaries [A STOCHASTIC OPTIMISATION PROBLEM]

Choosing the mixture weight $\boldsymbol{\omega}$

Challenge: difficult to test the prior-data conflict and to quantify the degree of **commensurability**, since phase I trials are typically small

Define the mixture prior for the k^{th} cohort as

$$f_k(\theta) = \omega_k \times \underbrace{g(\theta)}_{ ext{pre-clinical data}} + (1 - \omega_k) \times \underbrace{h(\theta)}_{ ext{operational prior}},$$

- ω_k is dynamically determined at each interim analysis
 - small value when evidenced by prior-data conflict
 - ► large value when animal and human data appear commensurate
- A Bayesian decision-theoretic approach to measuring the commensurability
 - How accurate are predictions of human responses based on pre-clinical data?
 - Penalise harshly when they underestimate risks of toxicity in humans

Measuring the prior-data conflict

Fouskakis and Draper (2002), Vehtari and Ojanen (2012)

Let Y denote the response of a human patient receiving a specific dose.

- **①** Derive prior predictive distributions $\mathcal{P}\{Y = \tilde{y}\}$ from animal data
- Oerive optimal prediction for Y as

$$\hat{\eta} = \arg \max_{\eta \in \{0,1\}} \sum_{\tilde{y}} u(\tilde{y},\eta) \mathcal{P}\{Y = \tilde{y}\}, \ \tilde{y} \in \{0,1\}$$

where $u(\tilde{y}, \eta)$ is the utility function that rewards predictions of \tilde{y} as η :

$$u(\tilde{y},\eta) = \begin{cases} 0, & \text{if } \eta = 0 \text{ while } \tilde{y} = 1 \text{ (incorrectly predict as no-DLT)} \\ s, & \text{if } \eta = 1 \text{ while } \tilde{y} = 0 \text{ (incorrectly predict as DLT)} \\ 1, & \eta = \tilde{y} \text{ (correct prediction)} \end{cases}$$

Note that 0 < s < 1.

法国际 化菌素

Measuring the prior-data conflict (*Cont'd*) $f_k(\theta) = \omega_k \times g(\theta) + (1 - \omega_k) \times p(\theta)$

Compare optimal prior predictions versus observed human responses for each dose d_j prior to the kth cohort

		Rewards ar	Cell counts		
		Observa			
		No-DLT	DLT		
Prior prediction $(\hat{\eta})$	No-DLT	u_{00} (1)	$u_{10}(0)$	<i>n</i> ₀₀	<i>n</i> ₁₀
	DLT	<i>u</i> ₀₁ (s)	u_{11} (1)	<i>n</i> 01	<i>n</i> ₁₁

- **9** Derive the predictive utility of the animal data for the observed human toxicity data on dose d_j as $U_j^k = \sum_{l=0}^1 \sum_{m=0}^1 u_{lm} n_{lm}$
- Measure commensurability of animal and human data by taking the average of predictive accuracy across doses used so far

$$\bar{a}_k = \frac{1}{J} \sum_{j=1}^J \frac{U_j^k}{\sum_{l=0}^1 \sum_{m=0}^l n_{lm}}$$

10 / 25

Measuring the prior-data conflict (*Cont'd*) $f_k(\theta) = \omega_k \times g(\theta) + (1 - \omega_k) \times p(\theta)$

In our investigation, we define

$$\omega_k = \bar{a}_k^{\lambda_k},$$

where λ_k can reflect

the relative variability:

$$\lambda_{k} = \frac{s.d.(\bar{\mathbf{a}}(y_{k},\hat{\eta}_{k}|\mathbf{x}_{k}))}{s.d.(\bar{\mathbf{a}}(\underbrace{y_{k},\ldots,y_{N}}_{\text{simul future obs., optimal pred.}}|\mathbf{x}_{k}))},$$

Notations

xk: phase I trial data

 y_k, \ldots, y_N : possible outcomes of future patients that receive the dose recommended based on the current best understanding $\hat{\eta}_k, \ldots, \hat{\eta}_N$: corresponding optimal predictions

11 / 25

Interim dose recommendations

Whitehead and Williamson (1998), Babb et al. (1998)

For the k^{th} cohort, $k = 1, 2, \ldots, N$

- Compare prior animal data with observed human data to derive ω_k
- Update the mixture prior f_k(θ) = ω_k × g(θ) + (1 − ω_k) × h(θ) to derive posterior f_k(θ|x_k)
- Use the accumulated data x_k to recommend a dose for the (k + 1)th cohort according to the patient gain criterion

$$\mathcal{G}=\left(\tilde{p}(d_j)-\pi\right)^{-2},\,$$

where $\tilde{p}(d_j)$ is the implied probability of toxicity at dose d_j and π is the target level

Practical considerations:

- 1) Effective sample size of the $g(\theta)$
- 2) Run-in period for the incorporation of pre-clinical info

< ロ > < 同 > < 回 > < 回 >

Safety constraint

Throughout the trial, the probability of toxicity is considered to be excessively high if

$$\int_{\gamma}^{1} g(p(d_j)) \mathrm{d}p(d_j) \geq \delta_j$$

where γ is some threshold and δ is the pre-define level.

This naturally specifies an early stopping rule:

- Stop when none of the doses available satisfy the safety constraint;

i.e., early stopping for safety, if the lowest dose d_1 is found excessively toxic:

$$\int_{\gamma}^{1} g(p(d_1)) \mathrm{d}p(d_1) \geq \delta$$

Note

In our simulations, we set $\gamma = 0.45$ and $\delta = 0.25$.

Simulations

From the **pre-clinical studies**: $p(d_{-1}) \approx 0.03$; $p(d_0) \approx 0.60 \rightarrow$ worth $n_{-1} = n_0 = 60$

Settings for the first-in-man trial:

- Cohort size c = 1
- Max. ss *N* = 24
- Number of doses J = 7

Thus, priors derived as

- Target level $\pi = 0.25$
- Early stopping for accuracy is not considered
- Results based on 1000 simulated trials

Investigated human toxicity scenarios

Comparator designs

BDTA

- BLRM with operational prior
- CRM with naïve opinion of incorporating pre-clinical info
- Non-parametric optimal benchmark

Simulation results (I)

Simulation results (II)

Simulation results (III)

Simulation results (IV)

H Zheng, LV Hampson

Incorporating pre-clinical info

PSI Translational Stats

20 / 25

Sensitivity analysis

H Zheng, LV Hampson

Incorporating pre-clinical info

PSI Translational Stats

Highly toxic & Very safe scenarios

Dose levels												
Design		1	2	3	4	5	6	7	None	DLT	Ñ	
	p(d)	40	60	80	87	91	93	95				
BDTA	Sel	8.9	1.5	0	0	0	0	0	89.6	3.4	6.6	
	Pts	3.6	2.2	0.3	0.5	0	0	0				
BLRM	Sel	9.1	0.9	0	0	0	0	0	90.0	3.3	6.5	
	Pts	3.6	2.4	0.2	0.3	0	0	0				
CRM	Sel	12.7	0.4	0	0	0	0	0	86.9	3.4	6.9	
	Pts	4.8	1.3	0.7	0.1	0	0	0				
	p(d)	0.1	0.2	0.5	2	6	15	25				
BDTA	Sel	0.5	0.1	0.1	1.1	7.3	30.8	60.7	0	3.6	24	
	Pts	1.0	1.0	0	1.6	4.8	6.2	9.4				
BLRM	Sel	0	0	0	1.9	14.8	17.6	65.2	0	4.5	24	
	Pts	1.0	1.0	0	1.3	0.9	2.7	17.1				
CRM	Sel	0	0	0	0.3	5.8	39.4	54.4	0	3.2	24	
	Pts	1.0	1.0	1.0	1.7	4.6	7.1	7.6				

Table : Results for two more extreme cases, i.e., highly toxic and very safe

Conclusions

- Incorporating pre-clinical data will potentially lead to more efficient escalation decision making and greater estimation precision
 - Dose recommendations are robust and competitive
 - Patients have enhanced possibility to receive the target dose
- Pre-clinical information that may undermine the safety of patients can be quickly discounted during the course of the trial

Future work

- Two or more animal species
- Pharmacological information
- Phase I trials with both safety and efficacy endpoints

References

Neuenschwander B, Branson M, Gsponer T. Critical aspects of the Bayesian approach to phase I cancer trials. Stat Med 2008; 27: 2420-39.

O'Quigley J, Shen LZ. Continual reassessment method: a likelihood approach. Biometrics. 1996; 52: 673-84.

Fouskakis D, Draper D. Stochastic Optimization: a Review. International Statistical Review 2002; 70: 315-49.

Vehtari A, Ojanen J. A survey of Bayesian predictive methods for model assessment, selection and comparison. Statistics Survey 2012; 6: 142-28.

Morita S, Thall PF, Müller P. Determining the effective sample size of a parametric prior. Biometrics 2008; 64: 595-602.

