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Motivation
FDA (2005), Sharma and McNeill (2009), Reigner and Blesch (2002)

Current approaches that use pre-clinical data in early drug development centre around
the allometric scaling:

@ a maximum recommended starting dose for humans is determined using allometry,
which can produce inaccurate predictions

@ pre-clinical data are not formally incorporated into conduct/interpretation of the
phase | trial

Formal incorporation of pre-clinical data in phase | trials should be considered:
@ represent the information in a prior for parameters of the dose-toxicity model

@ discount it quickly if a prior-data conflict emerges anytime during the trial
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Model-based dose-escalation procedures: the BLRM
Whitehead and Williamson (1998), Neuenschwander et al. (2008)

Bayesian logistic regression model (BLRM)
@ Doses di, ..., d; are available for testing
@ Binary endpoint: Dose-limiting toxicity (DLT) versus no-DLT

@ Aim: to estimate the TDm, the dose associated with risk of DLT at level m

The dose-toxicity model: log { 15(:(21)} = 01 + exp(62) log d

> Dose-escalation decision making relies on the probabilistic inference with the
risk of DLT p(d)

A bivariate normal prior for 8 = (61, 6,)

» operational priors: calibrated to ensure dose-escalation scheme has
favourable operating characteristics

» informative prior: formulated using pre-clinical data
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Incorporating pre-clinical toxicology data

Adopt mixture prior for

f0)=wx gO@) + (1-w)x h(@)
—~—
pre-clinical data operational prior
Deriving the informative component g(60):

@ Summarise pre-clinical information as pseudo-data on the lowest and highest doses
d_1 and do

@ This specifies independent beta distributions for p(d_1) and p(do)

@ Given logit{p(d)} = 01 + exp(62) log d, derive the priors for p(d;),j =1,...,J and
their 2.5, 50" and 97.5'"" percentiles

@ Find the bivariate normal prior for 8 = (601, 6,), which is calibrated to agree with

the exact summaries
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Choosing the mixture weight w

Challenge: difficult to test the prior-data conflict and to quantify the degree of
commensurability, since phase | trials are typically small

Our mixture prior for @ at stage k is

fk(0) = Wy X 5(9 + (1 — wk) X h\(f/

operational prior

)

pre-clinical data

@ wy is dynamically determined at each interim analysis

» smaller weight when evidenced by prior-data conflict
> larger weight when animal and human data appear commensurate

@ We develop a Bayesian decision-theoretic approach to measuring the
commensurability

» How accurate are predictions of human responses based on pre-clinical data?
> Penalise the pre-clinical data harshly when they underestimate the

risk of DLT in humans %DEAS
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Measuring the prior-data conflict
Fouskakis and Draper (2002), Vehtari and Ojanen (2012)

Let Y denote the response of a human patient receiving a specific dose.

@ Derive prior predictive distributions P{Y = ¥} from animal data

@ Derive optimal prediction for Y as

f) = arg _max u(y,mP{Y =y}, ¥ €{0,1}

where u(¥,n) is the utility function that rewards predictions of ¥ as 7:

0, ifn=0whiley =1 (incorrectly predict as no-DLT)
u(¥,m) =< ¢, ifn=1whiley =0 (incorrectly predict as DLT)
1, n =y (correct prediction)

Note that 0 < ¢ < 1.
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Measuring the prior-data conflict (Cont'd)
f(0) = wi x g(8) + (1 — wk) x p(8)

© Compare optimal prior predictions versus observed human responses for each dose
d; at interim analysis k

Rewards and Penalties Cell counts
Observation (y)

No-DLT DLT
Prior prediction ()  No-DLT ugo (1) uo (0) Noo nio
DLT uo1 (c) un (1) No1 N

© Derive the predictive utility of the animal data for the observed human toxicity
data on dose d; as Ujk = Z,lzo Z}n:o Uim Nim

© Measure commensurability of animal and human data at stage k by taking average
of predictive accuracy across doses used so far

ax =

JZZIOZ

@ Set wy as a function of 3, in relevance to the trial information time %
IDEAS

= N
Wy = ak /n
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Interim dose recommendations
Whitehead and Williamson (1998), Babb et al. (1998)

At each interim anakysis, k =1,2,..., N —1
@ Compare prior animal data with human data to derive wx

@ Update the mixture prior f(0) = wi X g(0) + (1 — wk) x h(O) to derive posterior
ACEY

@ Use the accumulated data xx to recommend a dose for the (k + 1)™ cohort
according to the determinant gain criterion

G = /(detl(a))*1 fi(0]x«)dO

Safety constraint
Controlling the probability of excessive toxicity at level §:

1
| etelaapta) <
-
where «y is some threshold above which the risk of toxicity is considered
excessively high. In our simulations, we set v = 0.50 and 6 = 0.25. %DEAS
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Simulation scenarios

@ Re-design the lurtotecan trial (N=24, c=1) reported by Giles et al. (2004) by
incorporating pre-clinical information - 5 hypothetical prior scenarios

@ Early stopping for accuracy is not considered

Scenario 1: animal data predict excess of human DLTs Scenario 2: animal data predict insufficient human DLTs Scenario 3: animal data indicate a shallow curve
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Simulation results (1)

Results based on 1000 simulated dose-escalation studies (N=24, c=1)

@ Average proportion of allocating patients to each dose
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Simulation results (2)

Results based on 1000 simulated dose-escalation studies (N=24, c=1)

@ Average proportion of declaring a dose as TD20
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Simulation results (3)

Results based on 1000 simulated dose-escalation studies (N=24, c=1)

Scenario 2: animal data predict insufficient human DLTs Scenario 4: animal data are commensurate with human DLTs
e ] e ]
* *
© | © |
o o
5 5
a - a .
59 59
o
= - = .
3« . 3
8o 8o
o °
4 . . 2 ]
& o . & o
o | b . o | 4
SR o e
° T T T T T T ° T T T T T T
22 3.1 3.3 3.7 4 4.9 22 3.1 3.3 3.7 4 4.9
Doses (mg/mz) Doses (mg/mz)
Mixture weight for Scenario 2 at k-th interim analysis Mixture weight for Scenario 4 at k-th interim analysis
2 e 2 eeee
- B . o0
o | o | ............. [N ]
s s
.
4 TR . 4
— etessesst? -
< | . < |
S S
g 7 ' . . g 7
4 o 4
o e
S
L1 N LI
18 5 7 9 1 18 15 17 19 21 23 1.8 5 7 9 11 13 15 17 19 21 28
k k

H Zheng, LV Hampson Incorporating pre-clinical info

ISCB 2016

IDEAS

12 /15



Conclusions

@ Incorporating pre-clinical data will potentially lead to more efficient escalation
decision making and greater estimation precision

» Patients have enhanced possibility to receive the target dose
» Dose recommendations are robust and sensible to different type of prior
from animal data

@ Our approach can essentially discount the pre-clinical information if prior-data
conflict emerges anytime during the trial
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