A Bayesian PK/PD model for synergy

A case study

Fabiola La Gamba, Tom Jacobs, Christel Faes

Janssen Research & Development Hasselt University 06/10/2016

- Case study
- Methods
- Results
- Conclusions and future perspectives

- Case study
- Methods
- Findings
- Conclusions and future perspectives

Aim: To assess the safety resulting from the coadministration of a novel molecule with an existing treatment using in-vivo data

Data sets:

- Historical study: Dose-response longitudinal data where only the existing treatment is administered (55 rats in total).
- **11 Synergy studies**: Both existing and novel treatments are assessed.

Synergy studies design. In each study: 20 rats, 5 for each

treatment group

Vehicle		E treat	xistir ment	ng conly	tre	No	vel ent o	nly	Tre	eatme nbina	ents ation
Study	1	2	3	4	5	6	7	8	9	10	11
Existing treatment dose (mpk)	10	2.5	10	0.63	10	0.16	2.5	0.63	0.16	0.04	0.04
Novel treatment dose (mpk)	40	40	10	40	2.5	40	10	10	10	10	40

Synergy studies variables:

- Existing treatment dose
- Novel treatment dose
- Continuous safety biomarker, measured at the moment of oral administration, and after 1, 2, 3, 4 hours

Case study – How does the data look like?

Example from study 1

Case study – How does the data look like?

Example from study 1

- Case study
- Methods
- Findings
- Conclusions and future perspectives

Methods – Turnover model with latent PK profile

$$\frac{d\bar{R}_{it}}{dt} = k_{in} \left(1 - \frac{l_{max}C_{it}}{lC_{50} + C_{it}} \right) - k_{out}\bar{R}_{it}$$

$$\frac{d\bar{R}_{it}}{dt} = k_{in} \left(1 - \frac{l_{max}C_{it}}{lC_{50} + C_{it}} \right) - k_{out}\bar{R}_{it}$$

$$\frac{d\bar{R}_{it}}{With: \bar{R}_{it=0} = k_{in}/k_{out}}{lC_{50} = e^{\beta D_{ei}D_{ni}}}$$

$$\frac{d\bar{R}_{it}}{R_{it}=Response: R_{it} \sim N(\bar{R}_{it}, 1/\tau_R) \\ C_{it}=Plasma \text{ concentration of the existing treatment (latent)}}{D_{ei}=Existing \text{ treatment dose } B=PD \text{ interaction coefficient}}$$

$$\frac{d\bar{R}_{it}}{R_{it}=Response: R_{it} \sim N(\bar{R}_{it}, 1/\tau_R) \\ C_{it}=Plasma \text{ concentration of the existing treatment (latent)}}{D_{ei}=Existing \text{ treatment dose } B=PD \text{ interaction coefficient}}$$

Methods – Synergy

Loewe additivity (in-vitro)

If treatment 2 is inactive*:
$$\frac{d_1}{D_{y,1}} = \begin{bmatrix} =1 \text{ Additivity} \\ <1 \text{ Synergy} \\ >1 \text{ Antagonism} \end{bmatrix}$$

Our "synergy" model (in-vivo)

$$IC_{50} = e^{\beta D_1 D_2} - \begin{cases} =1 \text{ Additivity } \Rightarrow \beta = 0 \\ <1 \text{ Synergy } \Rightarrow \beta < 0 \\ >1 \text{ Antagonism } \Rightarrow \beta > 0 \end{cases}$$

*Harbron C. A flexible unified approach to the analysis of pre-clinical combination studies. Stat Med 2010;29(16):1746-56.

Methods – How to pool data from different studies?

- Historical data \rightarrow Frequentist approach (NONMEM)
- → Study 1-11 → **Bayesian approach** (WinBUGS)

The posteriors from the previous study are used in order to build the priors for the current study.

Two models performed:

- Model without random effects
- Model with random k_{out}

- Case study
- Methods
- Results
- Conclusions and future perspectives

Results – Fixed vs Random effects model

	Νοι	random eff	fects	Random kout			
	Posterior mean	2.5% CI	97.5% CI	Posterior mean	2.5% CI	97.5% CI	
$\log(k_e)$	-0.411	-0.535	-0.309	-0.326	-0.378	-0.263	
$\log(k_{out})$	0.264	0.078	0.460	-0.166	-0.283	-0.040	
I _{max}	0.261	0.240	0.281	0.292	0.271	0.312	
$\log(\overline{R}_0)$	3.615	3.614	3.617	3.616	3.615	3.617	
τ_R	2.742	2.525	2.977	2.860	2.663	3.065	
β	-2.655	-3.374	-1.919	-2.952	-3.578	-2.486	
τ _{kout}	-	-	-	1.959	1.476	2.540	
DIC		148.230			144.653		
DIC		148.230			144.653		

Results – Fitting, random kout (e.g. study 5)

Results – Fixed vs Random effects model

	Νοι	random ef	fects	Random kout			
	Posterior mean	2.5% CI	97.5% CI	Posterior mean	2.5% CI	97.5% CI	
$\log(k_e)$	-0.411	-0.535	-0.309	-0.326	-0.378	-0.263	
$\log(k_{out})$	0.264	0.078	0.460	-0.166	-0.283	-0.040	
I _{max}	0.261	0.240	0.281	0.292	0.271	0.312	
$\log(\overline{R}_0)$	3.615	3.614	3		3.615	3.617	
τ_R	2.742	2.525	Are	the	2.663	3.065	
β	-2.655	-3.374	estin relia	nates ble?	-3.578	-2.486	
τ _{kout}	-	-			1.476	2.540	
DIC		148.230			144.653		
	The second states in a	and the part of the second	A DIA DIA DIA		A REAL PROPERTY AND A REAL		

Results – What is the impact of a permutation?

Study	1	2	3	4	5	6	7	8	9	10	11
Existing treatment dose (mpk)	10	2.5	10	0.63	10	0.16	2.5	0.63	0.16	0.04	0.04
Novel treatment dose (mpk)	40	40	10	40	2.5	40	10	10	10	10	40
Study	5	3	8	11	6	1	2	9	7	4	10
Existing treatment dose (mpk)	10	10	0.63	0.04	0.16	10	2.5	0.16	2.5	0.63	0.04
Novel treatment dose (mpk)	2.5	10	10	40	40	40	40	10	10	40	10

Results – What is the impact of a permutation?

	Orig	ginal seque	ence	Permutation			
	Posterior mean	2.5% CI	97.5% CI	Posterior mean	2.5% CI	97.5% CI	
$\log(k_e)$	-0.326	-0.378	-0.263	-0.315	-0.378	-0.245	
$\log(k_{out})$	-0.166	-0.283	-0.040	0.005	-0.094	0.107	
I _{max}	0.292	0.271	0.312	0.294	0.277	0.315	
$\log(\bar{R}_0)$	3.616	3.615	3.617	3.615	3.614	3.615	
$ au_R$	2.860	2.663	3.065	2.957	2.735	3.232	
β	-2.952	-3.578	-2.486	-2.628	-3.061	-2.247	
τ _{kout}	1.959	1.476	2.540	2.81	1.809	4.089	
DIC		144.653			148.485		

Results – WinBUGS vs Stan, sequential vs pooled*

	WinBUGS Sequential	Stan Sequential	Stan Pooled		
	Posterior mean (2.5% CI, 97.5% CI)	Posterior mean (2.5% CI, 97.5% CI)	Posterior mean (2.5% CI, 97.5% CI)		
$\log(k_e)$	-0.41 (-0.54, -0.31)	-0.37 (-0.46, -0.30)	-0.42 (-0.55, -0.30)		
$\log(k_{out})$	0.26 (0.08, 0.46)	0.09 (-0.01, 0.18)	-0.15 (-0.36, 0.03)		
I _{max}	0.26 (0.24, 0.28)	0.26 (0.24, 0.28)	0.27 (0.23, 0.30)		
$\log(\bar{R}_0)$	3.62 (3.61, 3.62)	3.62 (3.61, 3.62)	3.62 (3.61, 3.62)		
$ au_R$	2.74 (2.53, 2.98)	2.49 (2.33, 2.65)	2.44 (2.26, 2.64)		
β	-2.66 (-3.37, -1.92)	-3.06 (-3.72, -2.41)	-1.10 (-1.33, -0.87)		

*Fixed effects models performed.

- Case study
- Methods
- Results
- Conclusions and future perspectives

Conclusions and future perspectives

- The order of this 'sequential pooling' affects the results
- Even the best sorting may lead to unreliable estimates

Single dose combination for each study might be responsible for this

Future research:

- Consider design of experiments
- Priors choice

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 633567.

