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Aim: To assess the safety resulting from the co-
administration of a novel molecule with an existing 
treatment using in-vivo data 
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Data sets: 
 

• Historical study: Dose-response longitudinal data where 
only the existing treatment is administered (55 rats in 
total). 

• 11 Synergy studies: Both existing and novel treatments 
are assessed.  
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Synergy studies design. In each study: 20 rats, 5 for each 

treatment group 
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Vehicle 

Existing 
treatment only 

Novel 
treatment only 

Treatments 
combination 

Study 1 2 3 4 5 6 7 8 9 10 11 

Existing 
treatment 
dose (mpk) 

10 2.5 10 0.63 10 0.16 2.5 0.63 0.16 0.04 0.04 

Novel 
treatment 
dose (mpk) 

40 40 10 40 2.5 40 10 10 10 10 40 
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Synergy studies variables: 
 

• Existing treatment dose 
• Novel treatment dose  
• Continuous safety biomarker, measured at the moment of 

oral administration, and after 1, 2, 3, 4 hours 
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Example from 
study 1 
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Example from 
study 1 
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Vehicle 

Existing 
treatment only 

Novel 
treatment only 

Treatments 
combination 
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Methods – Turnover model with latent PK profile 
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𝑅𝑖𝑡=Response: 𝑅𝑖𝑡~𝑁(𝑅 𝑖𝑡 , 1/𝜏𝑅) 
𝐶𝑖𝑡=Plasma concentration of the 
         existing  treatment (latent) 
𝐷𝑒𝑖=Existing treatment dose 
𝐷𝑛𝑖=Novel treatment dose 
β=PD interaction coefficient 
 

  

With: 𝑅 𝑖𝑡=0 = 𝑘𝑖𝑛/𝑘𝑜𝑢𝑡 
 

         𝐼𝐶50 = 𝑒𝛽𝐷𝑒𝑖𝐷𝑛𝑖  

06/10/2016 

𝑑𝑅 𝑖𝑡
𝑑𝑡

= 𝑘𝑖𝑛 1 −
𝐼𝑚𝑎𝑥𝐶𝑖𝑡

𝐼𝐶50 + 𝐶𝑖𝑡
− 𝑘𝑜𝑢𝑡𝑅 𝑖𝑡 

 

Combination Existing 
treatment only 



• Loewe additivity (in-vitro) 

 

 

 

• Our “synergy” model (in-vivo) 

                    

           𝐼𝐶50 = 𝑒𝛽𝐷1𝐷2 
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𝑑1

𝐷𝑦,1
 

=1 Additivity 
<1 Synergy 
>1 Antagonism 

=1 Additivity  𝛽 = 0 
<1 Synergy  𝛽 < 0 
>1 Antagonism  𝛽 > 0 

Methods – Synergy  

If treatment 2 is inactive*: 

*Harbron C. A flexible unified approach to the analysis of pre-clinical combination studies. Stat Med 2010;29(16):1746-56. 
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• Historical data  Frequentist approach (NONMEM) 

• Study 1-11  Bayesian approach (WinBUGS) 

 

 

 

 

• Model without random effects 

• Model with random 𝑘𝑜𝑢𝑡  
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Two models performed: 
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Methods – How to pool data from different 
studies? 
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The posteriors from the previous study are used 
in order to build the priors for the current study.  
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• Results 
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Results – Fixed vs Random effects model 

No random effects 
 

Random kout 

Posterior 
mean 

2.5% CI 97.5% CI Posterior 
mean 

2.5% CI 97.5% CI 

log (𝑘𝑒) -0.411 -0.535 -0.309 -0.326 -0.378 -0.263 

log (𝑘𝑜𝑢𝑡) 0.264 0.078 0.460 -0.166 -0.283 -0.040 

𝐼𝑚𝑎𝑥 0.261 0.240 0.281 0.292 0.271 0.312 

log(𝑅 0) 3.615 3.614 3.617 3.616 3.615 3.617 

𝜏 𝑅 2.742 2.525 2.977 2.860 2.663 3.065 

𝛽 -2.655 -3.374 -1.919 -2.952 -3.578 -2.486 

𝜏 𝑘𝑜𝑢𝑡 - - - 1.959 1.476 2.540 

DIC 148.230 144.653  
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Results – Fitting, random kout (e.g. study 5) 

Vehicle 

Existing treatment 

Novel treatment 

Combination 

12/09/2016 
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Results – Fixed vs Random effects model 

No random effects 
 

Random kout 

Posterior 
mean 

2.5% CI 97.5% CI Posterior 
mean 

2.5% CI 97.5% CI 

log (𝑘𝑒) -0.411 -0.535 -0.309 -0.326 -0.378 -0.263 

log (𝑘𝑜𝑢𝑡) 0.264 0.078 0.460 -0.166 -0.283 -0.040 

𝐼𝑚𝑎𝑥 0.261 0.240 0.281 0.292 0.271 0.312 

log(𝑅 0) 3.615 3.614 3.617 3.616 3.615 3.617 

𝜏 𝑅 2.742 2.525 2.977 2.860 2.663 3.065 

𝛽 -2.655 -3.374 -1.919 -2.952 -3.578 -2.486 

𝜏 𝑘𝑜𝑢𝑡 - - - 1.959 1.476 2.540 

DIC 148.230 144.653  
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Are the 
estimates 
reliable? 
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Results – What is the impact of a permutation? 
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Study 5 3 8 11 6 1 2 9 7 4 10 

Existing 
treatment 
dose (mpk) 

10 10 0.63 0.04 0.16 10 2.5 0.16 2.5 0.63 0.04 

Novel 
treatment 
dose (mpk) 

2.5 10 10 40 40 40 40 10 10 40 10 

Study 1 2 3 4 5 6 7 8 9 10 11 

Existing 
treatment 
dose (mpk) 

10 2.5 10 0.63 10 0.16 2.5 0.63 0.16 0.04 0.04 

Novel 
treatment 
dose (mpk) 

40 40 10 40 2.5 40 10 10 10 10 40 
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Original sequence 
 

Permutation 

Posterior 
mean 

2.5% CI 97.5% CI Posterior 
mean 

2.5% CI 97.5% CI 

log (𝑘𝑒) -0.326 -0.378 -0.263 -0.315 -0.378 -0.245 

log (𝑘𝑜𝑢𝑡) -0.166 -0.283 -0.040 0.005 -0.094 0.107 

𝐼𝑚𝑎𝑥 0.292 0.271 0.312 0.294 0.277 0.315 

log(𝑅 0) 3.616 3.615 3.617 3.615 3.614 3.615 

𝜏 𝑅 2.860 2.663 3.065 2.957 2.735 3.232 

𝛽 -2.952 -3.578 -2.486 -2.628 -3.061 -2.247 

𝜏 𝑘𝑜𝑢𝑡 1.959 1.476 2.540 2.81 1.809 4.089 

DIC 144.653  148.485 

19 A Bayesian PK/PD model for synergy; a case study 

12/09/2016 
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WinBUGS 
Sequential 

Stan 
Sequential 

Stan 
Pooled 

Posterior mean  
(2.5% CI, 97.5% CI) 

Posterior mean  
(2.5% CI, 97.5% CI) 

Posterior mean  
(2.5% CI, 97.5% CI) 

log (𝑘𝑒) -0.41 (-0.54, -0.31) -0.37 (-0.46, -0.30) -0.42 (-0.55, -0.30) 

log (𝑘𝑜𝑢𝑡) 0.26 (0.08, 0.46) 0.09 (-0.01, 0.18) -0.15 (-0.36, 0.03) 

𝐼𝑚𝑎𝑥 0.26 (0.24, 0.28) 0.26 (0.24, 0.28)  0.27 (0.23, 0.30) 

log(𝑅 0) 3.62 (3.61, 3.62) 3.62 (3.61, 3.62) 3.62 (3.61, 3.62) 

𝜏 𝑅 2.74 (2.53, 2.98) 2.49 (2.33, 2.65) 2.44 (2.26, 2.64) 

𝛽 -2.66 (-3.37, -1.92) -3.06 (-3.72, -2.41) -1.10 (-1.33, -0.87) 
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Results – WinBUGS vs Stan, sequential vs pooled* 
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*Fixed effects models performed. 
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Conclusions and future perspectives 

• The order of this ‘sequential pooling’ affects the results 

• Even the best sorting may lead to unreliable estimates 

 

 

 

 

Future research: 

• Consider design of experiments 

• Priors choice 
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Single dose combination for each study 
might be responsible for this 
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Thank you for your attention!  
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