Challenges and opportunities for sequential knowledge integration within a Bayesian PK/PD modeling framework

Fabiola La Gamba, Tom Jacobs, Jan Serroyen, Helena Geys, Christel Faes

PSI Conference; Amsterdam, 04/06/2018
Outline

• Case Study & Proposed K-PD model for synergy

• Sequential Integration: Modeling Aspects
 1. Prior specification
 2. Choice of random effects
 3. Types of sequential integration

• Simulation study

• Discussion
Case Study & Proposed K-PD model for synergy
Case study

Aim: To assess the safety (decrease of body temperature) resulting from the co-administration of a novel molecule with a marketed compound using in-vivo data.

11 studies:

<table>
<thead>
<tr>
<th>Study</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marketed compound dose (mpk)</td>
<td>10</td>
<td>2.5</td>
<td>10</td>
<td>0.63</td>
<td>10</td>
<td>0.16</td>
<td>2.5</td>
<td>0.63</td>
<td>0.16</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Novel compound dose (mpk)</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>40</td>
<td>2.5</td>
<td>40</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>
Case study – Example from study 1

No change

Effect in line with historical data

More pronounced change, later maximal effect
Proposed Bayesian K-PD model for synergy

PK Part: One compartment model with oral absorption

\[
\begin{align*}
\frac{dA_{e, it}}{dt} &= -k_a A_{e, it} \\
\frac{dC_{it}}{dt} &= k_a A_{e, it} - k_e C_{it}
\end{align*}
\]

PD part: Indirect response (turnover) model

\[
R_{it} \sim N(\bar{R}_{it}, \sigma_R^2)
\]

\[
\frac{d\bar{R}_{it}}{dt} = k_{in} \left(1 - \frac{I_{max}C_{it}}{IC_{50} + C_{it}}\right) - k_{out} \bar{R}_{it} \quad R_{i0} = \frac{k_{in}}{k_{out}}
\]

\[
IC_{50} = e^{\alpha D_{n,i} + \beta D_{e,i} D_{n,i}}
\]

Response: body temperature
Plasma concentration of the marketed compound (virtual)
Marketed compound dose
Novel compound dose
Main effect of the novel compound
Interaction coefficient
Proposed Bayesian K-PD model for synergy

Initial analysis:

- Historical data \rightarrow Frequentist approach (NONMEM)
- Study 1-11 \rightarrow Bayesian approach (Stan)

Different ways of pooling data:

- **Simple pooling**: Pooling study 1-11 together
- **Sequential integration**: The posteriors from a study are used to determine the hyperparameters of the priors of the following study
Sequential Integration: Modeling Aspects
1. Prior Specification
Prior Specification – Methods

The prior distributions were initially chosen by setting:

- Expected values \rightarrow point estimates
- Standard deviations \rightarrow double s.e.

From the analysis of historical data of the marketed compound

Prior specification study

Different priors chosen for I_{max}:
- Original prior (SD=0.02)
- Prior with doubled SD (SD=0.04)
- Uniform distribution (SD=0.29)

Analysis run on studies 1, 2, 3 pooled
Prior Specification – Results

Prior for I_{max}: SD=0.02
Prior Specification – Results

Prior for I_{max}: SD=0.04
Prior Specification – Results

Prior for I_{max}: SD=0.29
Prior Specification – Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>I_{max} SD=0.02</th>
<th>I_{max} SD=0.04</th>
<th>I_{max} SD=0.29</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{R}_0</td>
<td>37.12 (36.99; 37.26)</td>
<td>37.15 (37.03; 37.27)</td>
<td>37.16 (37.04; 37.28)</td>
</tr>
<tr>
<td>k_e</td>
<td>0.53 (0.39; 0.71)</td>
<td>0.55 (0.41; 0.71)</td>
<td>0.61 (0.44; 0.82)</td>
</tr>
<tr>
<td>k_{out}</td>
<td>1.15 (0.88; 1.52)</td>
<td>0.91 (0.63; 1.29)</td>
<td>0.78 (0.48; 1.12)</td>
</tr>
<tr>
<td>I_{max}</td>
<td>0.15 (0.12; 0.19)</td>
<td>0.20 (0.14; 0.27)</td>
<td>0.24 (0.17; 0.34)</td>
</tr>
<tr>
<td>α</td>
<td>-1.42 (-2.09; -0.51)</td>
<td>-1.58 (-2.08; -1.00)</td>
<td>-1.55 (-2.04; -1.09)</td>
</tr>
<tr>
<td>β</td>
<td>-2.85 (-7.34; -0.15)</td>
<td>-0.51 (-3.29; 0.48)</td>
<td>-0.13 (-1.17; 0.67)</td>
</tr>
<tr>
<td>$\sigma_{R_0}^2$</td>
<td>0.31 (0.19; 0.51)</td>
<td>0.26 (0.15; 0.44)</td>
<td>0.25 (0.15; 0.41)</td>
</tr>
<tr>
<td>σ_R^2</td>
<td>0.41 (0.36; 0.48)</td>
<td>0.41 (0.36; 0.48)</td>
<td>0.41 (0.36; 0.48)</td>
</tr>
</tbody>
</table>

The less informative the prior is specified, the larger the bias is observed; The correlated parameters compensate each other.
Sequential Integration: Modeling Aspects
2. Choice of Random Effect
Choice of Random Effect – Methods

Different random effect choices considered:

- Random baseline: $R_{i0} \sim N(\bar{R}_0, \sigma^2_{R_0})$
- Random k_{out}: $\log(k_{out,i}) \sim N(\log(\bar{k}_{out}), \sigma^2_{\log(k_{out})})$
- Random k_{in}: $\log(k_{in,i}) \sim N(\log(\bar{k}_{in}), \sigma^2_{\log(k_{in})}) \rightarrow$ convergence issues

Model run on data pooled altogether
Choice of Random Effect – Results

Posterior predictions and predictive intervals, study 1

Random baseline model

Random k_{out} model
Choice of Random Effect – Results

Distributions of the posterior means of subject-specific random effects

Random baseline model

Random k_{out} model

k_{out} for combination group
Choice of Random Effect – Results

Distributions of the posterior means of subject-specific random effects

Random baseline model

Random \(k_{out} \) model

Overcompensation between \(k_{out} \) and \(\beta \)

\(k_{out} \) for combination group
Sequential Integration: Modeling Aspects
3. Types of Sequential Integration
Types of sequential integration – Methods

Different types of sequential pooling compared with simple pooling:

1. Pooling of 1 study at a time*, keeping the original study order
2. Pooling of 1 study at a time*, order permutation

Permuted order:

<table>
<thead>
<tr>
<th>Study</th>
<th>5</th>
<th>3</th>
<th>8</th>
<th>11</th>
<th>6</th>
<th>1</th>
<th>2</th>
<th>9</th>
<th>7</th>
<th>4</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. treatment dose (mpk)</td>
<td>10</td>
<td>10</td>
<td>0.63</td>
<td>0.04</td>
<td>0.16</td>
<td>10</td>
<td>2.5</td>
<td>0.16</td>
<td>2.5</td>
<td>0.63</td>
<td>0.04</td>
</tr>
<tr>
<td>Nov. treatment dose (mpk)</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>10</td>
<td>10</td>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

*The first three studies were pooled together to guarantee the identifiability of β.
Types of sequential integration – Methods

Different types of sequential pooling compared with simple pooling:

3. Pooling of 3 studies at a time, keeping the original study order

4. Sequentially pooling 5 “optimal” studies, which were sampled from the existing data so that each of them contains all possible dose combinations
Types of sequential integration – Methods

Different types of sequential pooling compared with simple pooling:

3. Pooling of 3 studies at a time, keeping the original study order

4. Sequentially pooling 5 “optimal” studies, which were sampled from the existing data so that each of them contains all possible dose combinations
Types of sequential integration – Methods

Different types of sequential pooling compared with simple pooling:

3. Pooling of 3 studies at a time, keeping the original study order

4. Sequentially pooling 5 “optimal” studies, which were sampled from the existing data so that each of them contains all possible dose combinations
Types of sequential integration – Results

Posterior predictions and predictive intervals, study 1

1. Sequential integration, 1 study at a time

2. Sequential integration, permuted order
Types of sequential integration – Results

Posterior predictions and predictive intervals, study 1

3. Sequential integration, 3 studies at a time

4. Sequential integration, optimal studies
Types of sequential integration – Results

Posterior predictions and predictive intervals, study 1

Bayesian integration type

1. One study at a time
2. Permuted order
3. Three studies at a time
4. Five optimal studies
Simple pooling
Simulation study
Simulation study

Aim: Assess to what extent of model complexity the sequential integration deviates from the simple pooling

<table>
<thead>
<tr>
<th>Model</th>
<th>Informative</th>
<th>Non-hierarchical</th>
<th>Hierarchical (2 uncorrelated R.E.)</th>
<th>Hierarchical (2 correlated R.E.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear model</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Informative</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Uninformative</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1-comp PK model*</td>
<td>Informative</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Uninformative</td>
<td>✓</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>Sigmoidal Emax model</td>
<td>Informative</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Uninformative</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

* Linear kinetics, non-linear over time, sequential integration over doses
Discussion
Discussion

• The Bayesian sequential integration is an appealing approach, as it allows to analyze each study immediately instead of waiting for the end of data collection.

• If a **linear** model is performed, this technique produces **unbiased** estimates.

• Mitigating the risk of bias when a **nonlinear** model is performed can be achieved via:
 • Carefully designed integration of studies, to avoid the risk of parameter identifiability issues
 • The specification of informative prior distributions
 • The allocation of random effects on parameters that are not highly correlated with other parameters.
References

Thank you for your attention!

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 633567.